Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 163(1): 218-29, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406378

RESUMO

Mammalian DNA methylation plays an essential role in development. To date, only snapshots of different mouse and human cell types have been generated, providing a static view on DNA methylation. To enable monitoring of methylation status as it changes over time, we establish a reporter of genomic methylation (RGM) that relies on a minimal imprinted gene promoter driving a fluorescent protein. We show that insertion of RGM proximal to promoter-associated CpG islands reports the gain or loss of DNA methylation. We further utilized RGM to report endogenous methylation dynamics of non-coding regulatory elements, such as the pluripotency-specific super enhancers of Sox2 and miR290. Loci-specific DNA methylation changes and their correlation with transcription were visualized during cell-state transition following differentiation of mouse embryonic stem cells and during reprogramming of somatic cells to pluripotency. RGM will allow the investigation of dynamic methylation changes during development and disease at single-cell resolution.


Assuntos
Metilação de DNA , Análise de Célula Única , Animais , Ilhas de CpG , Metilases de Modificação do DNA/metabolismo , Células-Tronco Embrionárias , Elementos Facilitadores Genéticos , Humanos , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/metabolismo
2.
Cell ; 150(6): 1209-22, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980981

RESUMO

During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcadores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Técnicas Analíticas Microfluídicas , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422875

RESUMO

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Assuntos
Diferenciação Celular/fisiologia , Metilação de DNA/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
4.
Nature ; 586(7829): 440-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698189

RESUMO

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Assuntos
Heterocromatina/metabolismo , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Imunidade Adaptativa , Animais , Feminino , Imunidade Inata , Deficiência Intelectual/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Síndrome de Rett/genética
5.
Proc Natl Acad Sci U S A ; 120(37): e2306797120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676910

RESUMO

Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.


Assuntos
Sêmen , Linfócitos T Reguladores , Masculino , Animais , Camundongos , Humanos , Espermatozoides , Tolerância Imunológica , Anticorpos , Fertilidade
6.
Cell ; 135(4): 649-61, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18992931

RESUMO

Elucidating how chromatin influences gene expression patterns and ultimately cell fate is fundamental to understanding development and disease. The histone variant H2AZ has emerged as a key regulator of chromatin function and plays an essential but unknown role during mammalian development. Here, genome-wide analysis reveals that H2AZ occupies the promoters of developmentally important genes in a manner that is remarkably similar to that of the Polycomb group (PcG) protein Suz12. By using RNAi, we demonstrate a role for H2AZ in regulating target gene expression, find that H2AZ and PcG protein occupancy is interdependent at promoters, and further show that H2AZ is necessary for ES cell differentiation. Notably, H2AZ occupies a different subset of genes in lineage-committed cells, suggesting that its dynamic redistribution is necessary for cell fate transitions. Thus, H2AZ, together with PcG proteins, may establish specialized chromatin states in ES cells necessary for the proper execution of developmental gene expression programs.


Assuntos
Células-Tronco Embrionárias/citologia , Histonas/química , Proteínas Repressoras/química , Animais , Diferenciação Celular , Linhagem da Célula , Cromatina/metabolismo , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas do Grupo Polycomb , Ligação Proteica , Interferência de RNA
7.
Cell ; 133(2): 250-64, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423197

RESUMO

Pluripotent cells can be derived from fibroblasts by ectopic expression of defined transcription factors. A fundamental unresolved question is whether terminally differentiated cells can be reprogrammed to pluripotency. We utilized transgenic and inducible expression of four transcription factors (Oct4, Sox2, Klf4, and c-Myc) to reprogram mouse B lymphocytes. These factors were sufficient to convert nonterminally differentiated B cells to a pluripotent state. However, reprogramming of mature B cells required additional interruption with the transcriptional state maintaining B cell identity by either ectopic expression of the myeloid transcription factor CCAAT/enhancer-binding-protein-alpha (C/EBPalpha) or specific knockdown of the B cell transcription factor Pax5. Multiple iPS lines were clonally derived from both nonfully and fully differentiated B lymphocytes, which gave rise to adult chimeras with germline contribution, and to late-term embryos when injected into tetraploid blastocysts. Our study provides definite proof for the direct nuclear reprogramming of terminally differentiated adult cells to pluripotency.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Animais , Núcleo Celular/genética , Células-Tronco Embrionárias/citologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(6): 1570-5, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811475

RESUMO

The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (W(sh)/W(sh)), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse-human chimeric platform allows for a new approach to study NC development and diseases.


Assuntos
Quimera/metabolismo , Embrião de Mamíferos/citologia , Crista Neural/citologia , Pigmentação da Pele , Negro ou Afro-Americano , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , DNA/metabolismo , Fibroblastos/citologia , Gastrulação , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos C57BL , Microinjeções , Reação em Cadeia da Polimerase , Ratos , Especificidade da Espécie , Doadores de Tecidos
9.
Proc Natl Acad Sci U S A ; 109(32): 13004-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826230

RESUMO

Embryogenesis requires the timely and coordinated activation of developmental regulators. It has been suggested that the recently discovered class of histone demethylases (UTX and JMJD3) that specifically target the repressive H3K27me3 modification play an important role in the activation of "bivalent" genes in response to specific developmental cues. To determine the requirements for UTX in pluripotency and development, we have generated Utx-null ES cells and mutant mice. The loss of UTX had a profound effect during embryogenesis. Utx-null embryos had reduced somite counts, neural tube closure defects and heart malformation that presented between E9.5 and E13.5. Unexpectedly, homozygous mutant female embryos were more severely affected than hemizygous mutant male embryos. In fact, we observed the survival of a subset of UTX-deficient males that were smaller in size and had reduced lifespan. Interestingly, these animals were fertile with normal spermatogenesis. Consistent with a midgestation lethality, UTX-null male and female ES cells gave rise to all three germ layers in teratoma assays, though sex-specific differences could be observed in the activation of developmental regulators in embryoid body assays. Lastly, ChIP-seq analysis revealed an increase in H3K27me3 in Utx-null male ES cells. In summary, our data demonstrate sex-specific requirements for this X-linked gene while suggesting a role for UTY during development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Masculino , Camundongos , Camundongos Mutantes , Fatores Sexuais
10.
Proc Natl Acad Sci U S A ; 108(34): 14163-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844366

RESUMO

Mir-290 through mir-295 (mir-290-295) is a mammalian-specific microRNA (miRNA) cluster that, in mice, is expressed specifically in early embryos and embryonic germ cells. Here, we show that mir-290-295 plays important roles in embryonic development as indicated by the partially penetrant lethality of mutant embryos. In addition, we show that in surviving mir-290-295-deficient embryos, female but not male fertility is compromised. This impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals. Male mir-290-295(-/-) mice, due to the extended proliferative lifespan of their germ cells, are able to recover from this initial germ cell loss and are fertile. Female mir-290-295(-/-) mice are unable to recover and are sterile, due to premature ovarian failure.


Assuntos
Perda do Embrião/genética , Perda do Embrião/patologia , Células Germinativas/metabolismo , Células Germinativas/patologia , MicroRNAs/metabolismo , Penetrância , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Apoptose , Contagem de Células , Ciclo Celular , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Masculino , Camundongos , Camundongos Mutantes , MicroRNAs/genética
11.
Nat Methods ; 7(1): 56-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010831

RESUMO

We report transgenic mouse models in which three or four reprogramming factors are expressed from a single genomic locus using a drug-inducible transgene. Multiple somatic cell types can be directly reprogrammed to generate induced pluripotent stem cells (iPSCs) by culture in doxycycline. Because reprogramming factors are carried on a single polycistronic construct, the mice can be easily maintained, and the transgene can be easily transferred into other genetic backgrounds.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transgenes/genética , Animais , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , Especificidade de Órgãos , Recombinação Genética
12.
Stem Cell Reports ; 18(11): 2174-2189, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37832543

RESUMO

A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.


Assuntos
Metilação de DNA , Células-Tronco Pluripotentes Induzidas , Metilação de DNA/genética , Reprogramação Celular/genética , Haploinsuficiência , Fibroblastos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(1): 157-62, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19109433

RESUMO

Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter. We find that up to four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can be expressed from a single virus to generate iPS cells in both embryonic and adult somatic mouse cells and we show that a single proviral copy is sufficient to generate iPS cells from mouse embryonic fibroblasts. In addition we have generated human induced pluripotent stem (hiPS) cell lines from human keratinocytes, demonstrating that a single polycistronic virus can reprogram human somatic cells.


Assuntos
Reprogramação Celular/genética , Fibroblastos/citologia , Vetores Genéticos/genética , Queratinócitos/citologia , Células-Tronco Pluripotentes/citologia , Transgenes/genética , Animais , Células , Células Cultivadas , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética , Transfecção/métodos
14.
Proc Natl Acad Sci U S A ; 106(22): 8912-7, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19447925

RESUMO

Ectopic expression of defined transcription factors can reprogram somatic cells to induced pluripotent stem (iPS) cells, but the utility of iPS cells is hampered by the use of viral delivery systems. Small molecules offer an alternative to replace virally transduced transcription factors with chemical signaling cues responsible for reprogramming. In this report we describe a small-molecule screening platform applied to identify compounds that functionally replace the reprogramming factor Klf4. A series of small-molecule scaffolds were identified that activate Nanog expression in mouse fibroblasts transduced with a subset of reprogramming factors lacking Klf4. Application of one such molecule, kenpaullone, in lieu of Klf4 gave rise to iPS cells that are indistinguishable from murine embryonic stem cells. This experimental platform can be used to screen large chemical libraries in search of novel compounds to replace the reprogramming factors that induce pluripotency. Ultimately, such compounds may provide mechanistic insight into the reprogramming process.


Assuntos
Benzazepinas/farmacologia , Diferenciação Celular , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Indóis/farmacologia , Células-Tronco Pluripotentes/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Fibroblastos/citologia , Genes Reporter , Proteínas de Homeodomínio/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Luciferases/genética , Camundongos , Proteína Homeobox Nanog
15.
Nat Commun ; 12(1): 5855, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615869

RESUMO

Karyotype alterations have emerged as on-target complications from CRISPR-Cas9 genome editing. However, the events that lead to these karyotypic changes in embryos after Cas9-treatment remain unknown. Here, using imaging and single-cell genome sequencing of 8-cell stage embryos, we track both spontaneous and Cas9-induced karyotype aberrations through the first three divisions of embryonic development. We observe the generation of abnormal structures of the nucleus that arise as a consequence of errors in mitosis, including micronuclei and chromosome bridges, and determine their contribution to common karyotype aberrations including whole chromosome loss that has been recently reported after editing in embryos. Together, these data demonstrate that Cas9-mediated germline genome editing can lead to unwanted on-target side effects, including major chromosome structural alterations that can be propagated over several divisions of embryonic development.


Assuntos
Sistemas CRISPR-Cas , Estruturas Cromossômicas , Edição de Genes/métodos , Instabilidade Genômica , Animais , Segregação de Cromossomos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Cariótipo , Camundongos , Sequenciamento Completo do Genoma
16.
Science ; 371(6532)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33384301

RESUMO

Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms.


Assuntos
Genoma Humano , Genoma , Análise de Sequência de DNA , Animais , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromatina/química , Cromatina/ultraestrutura , Posicionamento Cromossômico , Cromossomos Humanos/ultraestrutura , Cromossomos de Mamíferos/ultraestrutura , Embrião de Mamíferos , Desenvolvimento Embrionário , Epigênese Genética , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Análise de Célula Única , Análise Espacial
17.
Methods ; 45(2): 101-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18593608

RESUMO

Addressing the fundamental questions of nuclear equivalence in somatic cells has fascinated scientists for decades and has resulted in the development of somatic cell nuclear transfer (SCNT) or animal cloning. SCNT involves the transfer of the nucleus of a somatic cell into the cytoplasm of an egg whose own chromosomes have been removed. In the mouse, SCNT has not only been successfully used to address the issue of nuclear equivalence, but has been used as a model system to test the hypothesis that embryonic stem cells (ESCs) derived from NT blastocysts have the potential to correct--through genetic manipulations--degenerative diseases. This paper aims to provide a comprehensive description of SCNT in the mouse and the derivation of ESCs from blastocysts generated by this technique. SCNT is a very challenging and inefficient procedure because it is technically complex, it bypasses the normal events of gamete interactions and egg activation, and it depends on adequate reprogramming of the somatic cell nucleus in vivo. Improvements in any or all those aspects may enhance the efficiency and applicability of SCNT. ESC derivation from SCNT blastocysts, on the other hand, requires the survival of only a few successfully reprogrammed cells, which have the capacity to proliferate indefinitely in vitro, maintain correct genetic and epigenetic status, and differentiate into any cell type in the body--characteristics that are essential for transplantation therapy or any other in vivo application.


Assuntos
Células-Tronco Embrionárias/fisiologia , Técnicas de Transferência Nuclear/tendências , Animais , Blastocisto/fisiologia , Reprogramação Celular/genética , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Epigênese Genética , Camundongos
18.
Dev Cell ; 49(1): 118-129.e7, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30827895

RESUMO

The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.


Assuntos
Células Sanguíneas/metabolismo , Proliferação de Células/genética , Células Precursoras Eritroides/metabolismo , Hematopoese/genética , Animais , Células Sanguíneas/citologia , Diferenciação Celular/genética , Divisão Celular/genética , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Células Precursoras Eritroides/citologia , Eritropoese/genética , Glucocorticoides/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Análise de Célula Única/métodos , Transcriptoma/genética
19.
Stem Cell Reports ; 10(5): 1445-1452, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29606614

RESUMO

Chimeric mice have been generated by injecting pluripotent stem cells into morula-to-blastocyst stage mouse embryo or by introducing more mature cells into later stage embryos that correspond to the differentiation stage of the donor cells. It has not been rigorously tested, however, whether successful chimera formation requires the developmental stage of host embryo and donor cell to be matched. Here, we compared the success of chimera formation following injection of primary neural crest cells (NCCs) into blastocysts or of embryonic stem cells (ESCs) into E8.5 embryos (heterochronic injection) with that of injecting ESCs cells into the blastocyst or NCCs into the E8.5 embryos (isochronic injection). Chimera formation was efficient when donor and host were matched, but no functional chimeric contribution was found in heterochronic injections. This suggests that matching the developmental stage of donor cells with the host embryo is crucial for functional engraftment of donor cells into the developing embryo.


Assuntos
Quimera/metabolismo , Crista Neural/citologia , Animais , Apoptose , Blastocisto/citologia , Células Cultivadas , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Gastrulação , Injeções , Camundongos Endogâmicos C57BL , Crista Neural/transplante , Transplante de Células-Tronco , Fatores de Tempo
20.
J Exp Med ; 215(10): 2686-2695, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30181412

RESUMO

We developed a method for rapid generation of B cell receptor (BCR) monoclonal mice expressing prerearranged Igh and Igk chains monoallelically from the Igh locus by CRISPR-Cas9 injection into fertilized oocytes. B cells from these mice undergo somatic hypermutation (SHM), class switch recombination (CSR), and affinity-based selection in germinal centers. This method combines the practicality of BCR transgenes with the ability to study Ig SHM, CSR, and affinity maturation.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas , Cadeias kappa de Imunoglobulina , Receptores de Antígenos de Linfócitos B , Animais , Linfócitos B/citologia , Centro Germinativo/citologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA