Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 226(7): 1231-1236, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35325158

RESUMO

Allergic symptoms after messenger RNA (mRNA) coronavirus disease 2019 (COVID-19) vaccines occur in up to 2% of recipients. Compared to nonallergic controls (n = 18), individuals with immediate allergic reactions to mRNA COVID-19 vaccines (n = 8) mounted lower immunoglobulin G1 (IgG1) to multiple antigenic targets in severe acute respiratory syndrome coronavirus 2 spike following vaccination, with significantly lower IgG1 to full-length spike (P = .04). Individuals with immediate allergic reactions to mRNA COVID-19 vaccines bound Fcγ receptors similarly to nonallergic controls. Although there was a trend toward an overall reduction in opsonophagocytic function in individuals with immediate allergic reactions compared to nonallergic controls, allergic patients produced functional antibodies exhibiting a high ratio of opsonophagocytic function to IgG1 titer.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hipersensibilidade , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunidade Humoral , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Vacinação
3.
mBio ; 14(4): e0090223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37535402

RESUMO

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Cell Rep ; 42(4): 112326, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000623

RESUMO

Group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.


Assuntos
Alphavirus , COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Antivirais , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinação
5.
Sci Transl Med ; 14(638): eabm4996, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35191769

RESUMO

Ad26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans. In this study, we report the correlates of durability of humoral and cellular immune responses in 20 rhesus macaques immunized with single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8 to 10 months after the initial immunization. Ad26.COV2.S elicited durable binding and neutralizing antibodies as well as memory B cells and long-lived bone marrow plasma cells. Innate immune responses and bone marrow plasma cell responses correlated with durable antibody responses. After Ad26.COV2.S boost immunization, binding and neutralizing antibody responses against multiple SARS-CoV-2 variants increased 31- to 69-fold and 23- to 43-fold, respectively, compared with preboost concentrations. Antigen-specific B cell and T cell responses also increased substantially after the boost immunization. Boosting with a modified Ad26.COV2.S.351 vaccine expressing the SARS-CoV-2 spike protein from the beta variant led to largely comparable responses with slightly higher beta- and omicron-specific humoral immune responses. These data demonstrate that a late boost with Ad26.COV2.S or Ad26.COV2.S.351 resulted in a marked increase in humoral and cellular immune responses that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques.


Assuntos
Ad26COVS1 , COVID-19 , Imunidade Humoral , Imunização Secundária , SARS-CoV-2 , Ad26COVS1/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca mulatta , Glicoproteína da Espícula de Coronavírus
6.
Blood Adv ; 6(6): 1671-1683, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073571

RESUMO

Chronic lymphocytic leukemia (CLL), the most common leukemia worldwide, is associated with increased COVID-19 mortality. Previous studies suggest only a portion of vaccinated CLL patients develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antibodies. Whether the elicited antibodies are functional and/or accompanied by functional T-cell responses is unknown. This prospective cohort study included patients with CLL who received SARS-CoV-2 and PCV13 vaccines (not concurrently). The primary cohort included adults with CLL off therapy. Coprimary outcomes were serologic response to SARS-CoV-2 (receptor binding domain [RBD] immunoassay) and PCV13 vaccines (23-serotype IgG assay). Characterization of SARS-CoV-2 antibodies and their functional activity and assessment of functional T-cell responses was performed. Sixty percent (18/30) of patients demonstrated serologic responses to SARS-CoV-2 vaccination, appearing more frequent among treatment-naïve patients (72%). Among treatment-naïve patients, an absolute lymphocyte count ≤24 000/µL was associated with serologic response (94% vs 14%; P < .001). On interferon-γ release assays, 80% (16/20) of patients had functional spike-specific T-cell responses, including 78% (7/9) with a negative RBD immunoassay, a group enriched for prior B-cell-depleting therapies. A bead-based multiplex immunoassay identified antibodies against wild-type and variant SARS-CoV-2 (α, ß, γ, and δ) in all tested patients and confirmed Fc-receptor binding and effector functions of these antibodies. Of 11 patients with negative RBD immunoassay after vaccination, 6 (55%) responded to an additional mRNA-based vaccine dose. The PCV13 serologic response rate was 29% (8/28). Our data demonstrate that SARS-CoV-2 vaccination induces functional T-cell and antibody responses in patients with CLL and provides the framework for investigating the molecular mechanisms and clinical benefit of these responses. This trial was registered at www.clinicaltrials.gov as #NCT05007860.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Adulto , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , Leucemia Linfocítica Crônica de Células B/terapia , Estudos Prospectivos , SARS-CoV-2
7.
mBio ; 13(1): e0214121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073738

RESUMO

As public health guidelines throughout the world have relaxed in response to vaccination campaigns against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more infectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, reinfections have emerged across the globe, even among previously infected and vaccinated individuals. As such, the ability to detect reexposure to and reinfection by SARS-CoV-2 is a key component for global protection against this virus and, more importantly, against the potential emergence of vaccine escape mutations. Accordingly, there is a strong and continued need for the development and deployment of simple methods to detect emerging hot spots of reinfection to inform targeted pandemic response and containment, including targeted and specific deployment of vaccine booster campaigns. In this study, we identify simple, rapid immune biomarkers of reinfection in rhesus macaques, including IgG3 antibody levels against nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies, that are recapitulated in human reinfection cases. As such, this cross-species analysis underscores the potential utility of simple antibody titers and function as price-effective and scalable markers of reinfection to provide increased resolution and resilience against new outbreaks. IMPORTANCE As public health and social distancing guidelines loosen in the setting of waning global natural and vaccine immunity, a deeper understanding of the immunological response to reexposure and reinfection to this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-specific biomarkers of reexposure and reinfection, however, could significantly accelerate our capacity to monitor the spread of the virus through naive and experienced hosts, providing key insights into mechanisms of disease attenuation. Using a nonhuman primate model of controlled SARS-CoV-2 reexposure, we deeply probed the humoral immune response following rechallenge with various doses of viral inocula. We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding domain of the spike protein of SARS-CoV-2 (RBD), IgG3 to the nucleocapsid protein (N), and FcγR2A receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from reexposure and reinfection in monkeys but also were recapitulated in a sequencing-confirmed reinfection patient and in a cohort of putatively reinfected humans that evolved a PCR-positive test in spite of preexisting seropositivity. As such, this cross-species analysis using a controlled primate model and human cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection and reexposure.


Assuntos
COVID-19 , Reinfecção , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
8.
bioRxiv ; 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36482964

RESUMO

Two group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA