Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2119872119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858416

RESUMO

At present, there is no simple, first principles-based, and general model for quantitatively describing the full range of observed biological temperature responses. Here we derive a general theory for temperature dependence in biology based on Eyring-Evans-Polanyi's theory for chemical reaction rates. Assuming only that the conformational entropy of molecules changes with temperature, we derive a theory for the temperature dependence of enzyme reaction rates which takes the form of an exponential function modified by a power law and that describes the characteristic asymmetric curved temperature response. Based on a few additional principles, our model can be used to predict the temperature response above the enzyme level, thus spanning quantum to classical scales. Our theory provides an analytical description for the shape of temperature response curves and demonstrates its generality by showing the convergence of all temperature dependence responses onto universal relationships-a universal data collapse-under appropriate normalization and by identifying a general optimal temperature, around 25 ∘C, characterizing all temperature response curves. The model provides a good fit to empirical data for a wide variety of biological rates, times, and steady-state quantities, from molecular to ecological scales and across multiple taxonomic groups (from viruses to mammals). This theory provides a simple framework to understand and predict the impact of temperature on biological quantities based on the first principles of thermodynamics, bridging quantum to classical scales.


Assuntos
Fenômenos Biológicos , Temperatura , Animais , Biologia , Mamíferos , Termodinâmica , Vírus
2.
Conserv Biol ; : e14247, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488677

RESUMO

Climate change is one of the most important drivers of ecosystem change, the global-scale impacts of which will intensify over the next 2 decades. Estimating the timing of unprecedented changes is not only challenging but is of great importance for the development of ecosystem conservation guidelines. Time of emergence (ToE) (point at which climate change can be differentiated from a previous climate), a widely applied concept in climatology studies, provides a robust but unexplored approach for assessing the risk of ecosystem collapse, as described by the C criterion of the International Union for Conservation of Nature's Red List of Ecosystems (RLE). We identified 3 main theoretical considerations of ToE for RLE assessment (degree of stability, multifactorial instead of one-dimensional analyses, and hallmarks of ecosystem collapse) and 4 sources of uncertainty when applying ToE methodology (intermodel spread, historical reference period, consensus among variables, and consideration of different scenarios), which aims to avoid misuse and errors while promoting a proper application of the framework by scientists and practitioners. The incorporation of ToE for the RLE assessments adds important information for conservation priority setting that allows prediction of changes within and beyond the time frames proposed by the RLE.


Perspectivas sobre el momento del colapso ecosistémico en un clima cambiante Resumen El cambio climático es uno de los principales causantes del cambio ecosistémico, cuyo impacto a escala global se intensificará en las próximas dos décadas. No sólo es un reto estimar el momento de los cambios sin precedentes, sino también es de gran importancia para el desarrollo de las directrices de conservación de los ecosistemas. El momento de aparición (MdA), el punto en el que el cambio climático puede diferenciarse de un clima previo; es un concepto de aplicación extensa en los estudios de climatología y proporciona una estrategia sólida pero poco explorada para evaluar el riesgo del colapso ecosistémico, como está descrito por el criterio C de la Lista Roja de Ecosistemas (LRE) de la Unión Internacional para la Conservación de la Naturaleza. Identificamos las tres consideraciones teóricas del MdA para la evaluación de la LRE (grado de estabilidad, análisis multifactoriales en vez de unidimensionales y distintivos del colapso ecosistémico) y cuatro fuentes de incertidumbre cuando se aplica la metodología MdA (difusión intermodelo, periodo de referencia histórica, consenso entre las variables y consideración de escenarios distintos), la cual busca evitar el mal uso y los errores mientras se promueve una aplicación adecuada del marco de los científicos y lo practicantes. La incorporación del MdA a las evaluaciones de la LRE añade información importante para el establecimiento de prioridades de conservación que permiten la predicción de cambios dentro y más allá del marco temporal propuesto por la LRE.

3.
Bioessays ; 43(2): e2000126, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184914

RESUMO

Cancer is a singular cellular state, the emergence of which destabilises the homeostasis reached through the evolution to multicellularity. We present the idea that the onset of the cellular disobedience to the metazoan functional and structural architecture, known as the cancer phenotype, is triggered by changes in the cell's external environment that occur with ageing: what ensues is a breach of the social contract of multicellular life characteristic of metazoans. By integrating old ideas with new evidence, we propose that with ageing the environmental information that maintains a multicellular organisation is eroded, rewiring internal processes of the cell, and resulting in an internal shift towards an ancestral condition resulting in the pseudo-multicellular cancer phenotype. Once that phenotype emerges, a new local social contract is built, different from the homeostatic one, leading to tumour formation and the foundation of a novel local ecosystem.


Assuntos
Evolução Biológica , Neoplasias , Envelhecimento , Animais , Ecossistema , Humanos , Neoplasias/genética , Fenótipo
4.
Glob Chang Biol ; 28(8): 2555-2577, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34951743

RESUMO

A multitude of actions to protect, sustainably manage and restore natural and modified ecosystems can have co-benefits for both climate mitigation and biodiversity conservation. Reducing greenhouse emissions to limit warming to less than 1.5 or 2°C above preindustrial levels, as outlined in the Paris Agreement, can yield strong co-benefits for land, freshwater and marine biodiversity and reduce amplifying climate feedbacks from ecosystem changes. Not all climate mitigation strategies are equally effective at producing biodiversity co-benefits, some in fact are counterproductive. Moreover, social implications are often overlooked within the climate-biodiversity nexus. Protecting biodiverse and carbon-rich natural environments, ecological restoration of potentially biodiverse and carbon-rich habitats, the deliberate creation of novel habitats, taking into consideration a locally adapted and meaningful (i.e. full consequences considered) mix of these measures, can result in the most robust win-win solutions. These can be further enhanced by avoidance of narrow goals, taking long-term views and minimizing further losses of intact ecosystems. In this review paper, we first discuss various climate mitigation actions that evidence demonstrates can negatively impact biodiversity, resulting in unseen and unintended negative consequences. We then examine climate mitigation actions that co-deliver biodiversity and societal benefits. We give examples of these win-win solutions, categorized as 'protect, restore, manage and create', in different regions of the world that could be expanded, upscaled and used for further innovation.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Carbono , Clima , Conservação dos Recursos Naturais/métodos
6.
Am J Phys Anthropol ; 172(2): 227-245, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957876

RESUMO

OBJECTIVES: This article addresses evidence of violence imbedded in both soft and hard tissues from early populations of hunters, fishermen, and gatherers, known as the Chinchorro culture, who lived between 10,000 and 4,000 cal yr BP, along the coast of the Atacama Desert, one of the driest environments on Earth. Our study is aimed to test two hypotheses (a) that interactions and violent behaviors increased through time as population density and social complexity augmented; and (b) that violence was more prevalent between local Chinchorro groups and groups from other inland locations. MATERIAL AND METHODS: Two lines of data were analyzed: (1) bioarchaeology, through the quantification of physical traces of interpersonal violence in skeletons and mummies from a sample of 136 adult individuals and, (2) isotopic chemical analysis (strontium) of individuals with traces of trauma in order to determine their local or foreign origin. RESULTS: Violence among Chinchorro populations was ubiquitous and remained invariant over time, with a remarkable skew to male (about 25% above female across the complete sample). Moreover, the chemical signature of individuals with traces of violence was not of foreign origin. DISCUSSION: The violence exerted by the Chinchorro groups was not related to increased population size, nor social complexity and was mostly restricted to individuals coming from the same coastal habitat. That is, our data suggest that violence was constant across the Archaic period among the Chinchorro, implying that violent behavior was part of the sociocultural repertory of these populations, likely associated to mechanisms to resolve conflicts and social tensions.


Assuntos
Fraturas Ósseas/etnologia , Comportamento Social/história , Violência/etnologia , Adolescente , Adulto , Arqueologia , Chile , Clima Desértico , Feminino , História Antiga , Humanos , Masculino , Adulto Jovem
7.
Ecology ; 99(3): 690-699, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29336480

RESUMO

Co-occurrence methods are increasingly utilized in ecology to infer networks of species interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is particularly common, but not restricted to, microbial networks constructed from metagenomic analyses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a well-resolved, empirically based, species interaction network from the same region. We evaluated the overlap in the information provided by each network and the extent to which there is a bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions. We found a poor correspondence between the co-occurrence network and the known species interactions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive non-trophic interactions such as commensalism and facilitation were detected at the highest rates. These results demonstrate that co-occurrence networks do not represent classical ecological networks in which interactions are defined by direct observations or experimental manipulations. Co-occurrence networks provide information about the joint spatial effects of environmental conditions, recruitment, and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expanding positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for well-known intertidal keystone species than for the rest of consumers in the community. Thus, as observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence networks must be interpreted with caution, especially when extending interaction-based ecological theory to interpret network variability and stability. Co-occurrence networks may be particularly valuable for analysis of community dynamics that blends interactions and environment, rather than pairwise interactions alone.


Assuntos
Ecologia , Cadeia Alimentar , Biota , Chile , Simbiose
8.
J Theor Biol ; 457: 199-210, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30176249

RESUMO

The concept of the Anthropocene is based on the idea that human impacts are now the primary drivers of changes in the earth's systems, including ecological systems. In many cases, the behavior that causes ecosystem change is itself triggered by ecological factors. Yet most ecological models still treat human impacts as given, and frequently as constant. This undermines our ability to understand the feedbacks between human behavior and ecosystem change. Focusing on the problem of species dispersal, we evaluate the effect of dispersal on biodiversity in a system subject to predation by humans. People are assumed to obtain benefits from (a) the direct consumption of species (provisioning services), (b) the non-consumptive use of species (cultural services), and (c) the buffering effects of the mix of species (regulating services). We find that the effects of dispersal on biodiversity depend jointly on the competitive interactions among species, and on human preferences over species and the services they provide. We find that while biodiversity may be greatest at intermediate levels of dispersal, this depends on structure of preferences across the metacommunity.


Assuntos
Biodiversidade , Modelos Biológicos , Animais , Humanos
9.
Nature ; 486(7401): 52-8, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678279

RESUMO

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.


Assuntos
Mudança Climática/estatística & dados numéricos , Planeta Terra , Ecossistema , Modelos Teóricos , Animais , Monitoramento Ambiental , Previsões , Atividades Humanas , Humanos
10.
Proc Natl Acad Sci U S A ; 110(17): 6907-12, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569231

RESUMO

Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.


Assuntos
Agricultura/estatística & dados numéricos , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Biológicos , Vitis/crescimento & desenvolvimento , Vinho/estatística & dados numéricos , Água Doce/análise , Região do Mediterrâneo
11.
Ecol Appl ; 25(6): 1456-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26552256

RESUMO

Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely sensed images freely available through Google Earth with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant-plant interactions. Most of the patterns found from the remotely sensed images were more right skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems.


Assuntos
Clima Desértico , Monitoramento Ambiental/métodos , Fenômenos Fisiológicos Vegetais/fisiologia , Plantas/classificação , Astronave , Bases de Dados Factuais , Ecossistema , Modelos Biológicos
12.
Proc Natl Acad Sci U S A ; 114(40): 10523-10525, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28973860
13.
Proc Natl Acad Sci U S A ; 109(37): 14754-60, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891345

RESUMO

The emergence of complex cultural practices in simple hunter-gatherer groups poses interesting questions on what drives social complexity and what causes the emergence and disappearance of cultural innovations. Here we analyze the conditions that underlie the emergence of artificial mummification in the Chinchorro culture in the coastal Atacama Desert in northern Chile and southern Peru. We provide empirical and theoretical evidence that artificial mummification appeared during a period of increased coastal freshwater availability and marine productivity, which caused an increase in human population size and accelerated the emergence of cultural innovations, as predicted by recent models of cultural and technological evolution. Under a scenario of increasing population size and extreme aridity (with little or no decomposition of corpses) a simple demographic model shows that dead individuals may have become a significant part of the landscape, creating the conditions for the manipulation of the dead that led to the emergence of complex mortuary practices.


Assuntos
Evolução Cultural , Múmias/história , Comportamento Social/história , Condições Sociais/história , Chile , Clima Desértico , História Antiga , Humanos , Camada de Gelo/química , Isótopos de Oxigênio/análise , Dinâmica Populacional
14.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25143039

RESUMO

A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly.


Assuntos
Artrópodes/fisiologia , Tamanho Corporal , Carnivoridade , Ecossistema , Herbivoria , Lagartos/fisiologia , Animais , Chile , Clima Desértico , Modelos Logísticos , Dinâmica Populacional
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230010, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583479

RESUMO

In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy. This paper argues for moving beyond qualitative resilience metaphors, such as the 'ball and cup', towards a more quantitative macroecological framework. We suggest a conceptual and theoretical basis for ecological resilience that integrates macroecology with a stochastic diffusion approximation constrained by principles of biological symmetry. This approach provides an alternative novel framework for studying ecological resilience in the Anthropocene. We demonstrate how our framework can effectively quantify the impacts of major disturbances and their extensive ecological ramifications. We further show how biological scaling insights can help quantify the consequences of major disturbances, emphasizing their cascading ecological impacts. The nature of these impacts prompts a re-evaluation of our understanding of resilience. Emphasis on regularities of ecological assemblages can help illuminate resilience dynamics and offer a novel basis to predict and manage the impacts of disturbance in the Anthropocene more efficiently. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Ecossistema , Resiliência Psicológica , Biodiversidade , Geografia , Ecologia
16.
Ecol Lett ; 16(9): 1206-19, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23869696

RESUMO

Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold-adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Temperatura Alta , Animais , Mudança Climática
17.
Sci Adv ; 9(50): eadi7902, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091399

RESUMO

Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.


Assuntos
Ecossistema , Fósforo , Humanos , Linhagem Celular Tumoral , Metástase Neoplásica
18.
PLoS One ; 18(9): e0290690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729108

RESUMO

In this study, we examine the long-term trajectory of violence in societies that inhabited the coast of the Atacama Desert in northern Chile using three lines of evidence: bioarchaeology, geoarchaeology and socio-cultural contexts (rock art, weapons, and settlement patterns). These millennia-old populations adopted a way of life, which they maintained for 10,000 years, based on fishing, hunting, and maritime gathering, complementing this with terrestrial resources. We analyzed 288 adult individuals to search for traumas resulting from interpersonal violence and used strontium isotopes 87Sr/86Sr as a proxy to evaluate whether individuals that showed traces of violence were members of local or non-local groups. Moreover, we evaluated settlement patterns, rock art, and weapons. The results show that the violence was invariant during the 10,000 years in which these groups lived without contact with the western world. During the Formative Period (1000 BC-AD 500), however, the type of violence changed, with a substantial increase in lethality. Finally, during the Late Intermediate Period (AD 1000-1450), violence and lethality remained similar to that of the Formative Period. The chemical signal of Sr shows a low frequency of individuals who were coastal outsiders, suggesting that violence occurred between local groups. Moreover, the presence of weapons and rock art depicting scenes of combat supports the notion that these groups engaged in violence. By contrast, the settlement pattern shows no defensive features. We consider that the absence of centralized political systems could have been a causal factor in explaining violence, together with the fact that these populations were organized in small-scale grouping. Another factor may have been competition for the same resources in the extreme environments of the Atacama Desert. Finally, from the Formative Period onward, we cannot rule out a certain level of conflict between fishers and their close neighbors, the horticulturalists.


Assuntos
Brassicaceae , Mustelidae , Adulto , Animais , Humanos , Caça , Isótopos de Estrôncio , Violência
20.
Ecol Lett ; 14(2): 141-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21166972

RESUMO

Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.


Assuntos
Biota , Magnoliopsida/classificação , Austrália , California , Chile , Conservação dos Recursos Naturais , Ecologia , Modelos Biológicos , Filogenia , Dinâmica Populacional , África do Sul , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA