Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Adv Exp Med Biol ; 1329: 443-474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664251

RESUMO

The tumor microenvironment (TME) is a complex infrastructure composed of stromal, epithelial, and immune cells embedded in a vasculature ECM. The microenvironment surrounding mammary epithelium plays a critical role during the development and differentiation of the mammary gland, enabling the coordination of the complex multihormones and growth factor signaling processes. Progesterone/progesterone receptor paracrine signaling interactions in the microenvironment play vital roles in stem/progenitor cell function during normal breast development. In breast cancer, the female sex hormones, estrogen and progesterone, and growth factor signals are altered in the TME. Progesterone signaling modulates not only breast tumors but also the breast TME, leading to the activation of a series of cross-communications that are implicated in the genesis of breast cancers. This chapter reviews the evidence that progesterone and PR signaling modulates not only breast epitheliums but also the breast TME. Furthermore, crosstalk between estrogen and progesterone signaling affecting different cell types within the TME is discussed. A better understanding of how PR and progesterone affect the TME of breast cancer may lead to novel drugs or a therapeutic approach for the treatment of breast cancer shortly.


Assuntos
Glândulas Mamárias Humanas , Receptores de Progesterona , Mama , Feminino , Humanos , Receptores de Progesterona/genética , Transdução de Sinais , Microambiente Tumoral
3.
Int J Mol Sci ; 18(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099049

RESUMO

Triple-negative breast cancer (TNBC) occurs in 10-15% of all breast cancer patients, yet it accounts for about half of all breast cancer deaths. There is an urgent need to identify new antitumor targets to provide additional treatment options for patients afflicted with this aggressive disease. Preclinical evidence suggests a critical role for insulin-like growth factor-2 (IGF2) and androgen receptor (AR) in regulating TNBC progression. To advance this work, a panel of TNBC cell lines was investigated with all cell lines showing significant expression of IGF2. Treatment with IGF2 stimulated cell proliferation in vitro (p < 0.05). Importantly, combination treatments with IGF1R inhibitors BMS-754807 and NVP-AEW541 elicited significant inhibition of TNBC cell proliferation (p < 0.001). Based on Annexin-V binding assays, BMS-754807, NVP-AEW541 and enzalutamide induced TNBC cell death (p < 0.005). Additionally, combination of enzalutamide with BMS-754807 or NVP-AEW541 exerted significant reductions in TNBC proliferation even in cells with low AR expression (p < 0.001). Notably, NVP-AEW541 and BMS-754807 reduced AR levels in BT549 TNBC cells. These results provide evidence that IGF2 promotes TNBC cell viability and proliferation, while inhibition of IGF1R/IR and AR pathways contribute to blockade of TNBC proliferation and promotion of apoptosis in vitro.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos/farmacologia , Fator de Crescimento Insulin-Like II/metabolismo , Feniltioidantoína/análogos & derivados , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Triazinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Androgênios/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Terapia de Alvo Molecular , Nitrilas , Feniltioidantoína/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Cancers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672563

RESUMO

Breast cancer (BC) remains among the most commonly diagnosed cancers in women worldwide. Triple-negative BC (TNBC) is a subset of BC characterized by aggressive behavior, a high risk of distant recurrence, and poor overall survival rates. Chemotherapy is the backbone for treatment in patients with TNBC, but outcomes remain poor compared to other BC subtypes, in part due to the lack of recognized functional targets. In this study, the expression of the tetraspan protein epithelial membrane protein 2 (EMP2) was explored as a predictor of TNBC response to standard chemotherapy. We demonstrate that EMP2 functions as a prognostic biomarker for patients treated with taxane-based chemotherapy, with high expression at both transcriptomic and protein levels following treatment correlating with poor overall survival. Moreover, we show that targeting EMP2 in combination with docetaxel reduces tumor load in syngeneic and xenograft models of TNBC. These results provide support for the prognostic and therapeutic potential of this tetraspan protein, suggesting that anti-EMP2 therapy may be beneficial for the treatment of select chemotherapy-resistant TNBC tumors.

5.
Proc Natl Acad Sci U S A ; 107(32): 14484-9, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660740

RESUMO

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1alpha at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica , Receptores CXCR4/antagonistas & inibidores , Fatores de Crescimento do Endotélio Vascular/genética , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transplante de Neoplasias , Neoplasias/metabolismo , Peptídeos/farmacologia , Ratos , Receptor Cross-Talk/fisiologia , Receptores CXCR4/metabolismo , Fatores de Transcrição , Transplante Heterólogo , Fator de Transcrição YY1/fisiologia
6.
J Steroid Biochem Mol Biol ; 227: 106230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36450315

RESUMO

The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.


Assuntos
Neoplasias da Mama , Progesterona , Humanos , Feminino , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Estrogênios , Androgênios
7.
Cancers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291938

RESUMO

Mechanisms of action of squalamine in human vascular endothelial cells indicate that this compound attaches to cell membranes, potentially interacting with calmodulin, Na+/H+ exchanger isoform NHE3 and other signaling pathways involved in the angiogenic process. Thus, squalamine elicits blockade of VEGF-induced endothelial tube-like formation in vitro. Further, squalamine reduces growth of several preclinical models of human cancers in vivo and acts to stop metastatic tumor spread, actions due largely to blockade of angiogenesis induced by the tumor and tumor microenvironment. Squalamine in Phase I/II trials, alone or combined with standard care, shows promising antitumor activity with limited side-effects in patients with advanced solid cancers. Increased attention on squalamine regulation of signaling pathways with or without combination treatments in solid malignancies deserves further study.

8.
JTO Clin Res Rep ; 2(4): 100150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590007

RESUMO

INTRODUCTION: Estrogen receptors (ER) (ERα, ERß) and aromatase (key enzyme for estrogen synthesis) are expressed in most human NSCLCs. High intratumoral estrogen levels and elevated aromatase expression in NSCLC predict poor outcome. This open-label, phase 1b, single-center study evaluated the safety and tolerability of escalating doses of the aromatase inhibitor, exemestane, in combination with carboplatin and pemetrexed in postmenopausal women with stage IV nonsquamous NSCLC. METHODS: Patients received exemestane (starting 1-wk before chemotherapy) at 25 mg orally (PO) daily (cohort 1) or 50 mg PO daily (cohort 2) combined with carboplatin (area under the curve 6 mg × min/mL) and pemetrexed (500 mg/m2) intravenously every 3 weeks for four cycles. Thereafter, patients were eligible for continued therapy with exemestane and pemetrexed or pemetrexed alone. RESULTS: A total of 10 patients consented for therapy, and two patients failed in the screening. Four patients completed the therapy in cohort 1 and four patients in cohort 2. The median number of cycles administered was 15 (range: 1-54). Maximum tolerated dose was exemestane 50 mg PO daily with combination chemotherapy. Intention-to-treat analysis revealed an objective response rate (ORR) of 62.5% (five of eight patients with partial response) and a clinical benefit rate of 87.5% (seven of eight patients with either stable disease or partial response). ORR was associated with aromatase expression (p = 0.02). Circulating estrogen levels decreased with exemestane use, and quality of life measurements did not significantly change during the treatment. There were no adverse events. CONCLUSIONS: The combination of carboplatin, pemetrexed, and exemestane in postmenopausal women with metastatic NSCLC is safe and well tolerated. Biomarker studies revealed that ORR correlates with tumor aromatase expression. These findings support future clinical trials to confirm the antitumor efficacy with this combination therapy.

9.
Cancer Lett ; 449: 66-75, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771431

RESUMO

Angiogenesis is critical for breast cancer progression. Overexpression of HER-2/neu receptors occur in 25-30% of breast cancers, and treatment with trastuzumab inhibits HER-2-overexpressing tumor growth. Notably, HER-2-mediated signaling enhances vascular endothelial growth factor (VEGF) secretion to increase tumor-associated angiogenesis. Squalamine (aminosterol compound) suppresses VEGF-induced activation of kinases in vascular endothelial cells and inhibits tumor-associated angiogenesis. We assessed antitumor effects of squalamine either alone or with trastuzumab in nude mice bearing breast tumor xenografts without (MCF-7) or with HER2-overexpression (MCF-7/HER-2). Squalamine alone inhibited progression of MCF-7 tumors lacking HER2 overexpression, and squalamine combined with trastuzumab elicited marked inhibition of MCF-7/HER2 growth exceeding that of trastuzumab alone. MCF-7/HER-2 cells secrete higher levels of VEGF than MCF-7 cells, but squalamine elicited no growth inhibition of either MCF-7/HER-2 or MCF-7 cells in vitro. However, squalamine did stop growth of human umbilical vein endothelial cells (HUVECs) and reduced VEGF-induced endothelial tube-like formations in vitro. These effects correlated with blockade of focal adhesion kinase phosphorylation and stress fiber assembly in HUVECs. Thus, squalamine effectively inhibits growth of breast cancers with or without HER-2-overexpression, an effect due in part to blockade of tumor-associated angiogenesis.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Colestanóis/administração & dosagem , Colestanóis/farmacologia , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Fosforilação/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/administração & dosagem , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Steroid Biochem Mol Biol ; 193: 105415, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226312

RESUMO

Breast cancers (BCs) with expression of estrogen receptor-alpha (ERα) occur in more than 70% of newly-diagnosed patients in the U.S. Endocrine therapy with antiestrogens or aromatase inhibitors is an important intervention for BCs that express ERα, and it remains one of the most effective targeted treatment strategies. However, a substantial proportion of patients with localized disease, and essentially all patients with metastatic BC, become resistant to current endocrine therapies. ERα is present in most resistant BCs, and in many of these its activity continues to regulate BC growth. Fulvestrant represents one class of ERα antagonists termed selective ER downregulators (SERDs). Treatment with fulvestrant causes ERα down-regulation, an event that helps overcome several resistance mechanisms. Unfortunately, full antitumor efficacy of fulvestrant is limited by its poor bioavailability in clinic. We have designed and tested a new generation of steroid-like SERDs. Using ERα-positive BC cells in vitro, we find that these compounds suppress ERα protein levels with efficacy similar to fulvestrant. Moreover, these new SERDs markedly inhibit ERα-positive BC cell transcription and proliferation in vitro even in the presence of estradiol-17ß. In vivo, the SERD termed JD128 significantly inhibited tumor growth in MCF-7 xenograft models in a dose-dependent manner (P < 0.001). Further, our findings indicate that these SERDs also interact with ER-positive immune cells in the tumor microenvironment such as myeloid-derived suppressor cells (MDSC), tumor infiltrating lymphocytes and other selected immune cell subpopulations. SERD-induced inhibition of MDSCs and concurrent actions on CD8+ and CD4 + T-cells promotes interaction of immune checkpoint inhibitors with BC cells in preclinical models, thereby leading to enhanced tumor killing even among highly aggressive BCs such as triple-negative BC that lack ERα expression. Since monotherapy with immune checkpoint inhibitors has not been effective for most BCs, combination therapies with SERDs that enhance immune recognition may increase immunotherapy responses in BC and improve patient survival. Hence, ERα antagonists that also promote ER downregulation may potentially benefit patients who are unresponsive to current endocrine therapies.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/uso terapêutico , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/imunologia , Antagonistas de Estrogênios/farmacologia , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores de Estrogênio/metabolismo
12.
Mol Cell Endocrinol ; 466: 51-72, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29146555

RESUMO

Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Progesterona/química , Receptores de Progesterona/genética
13.
Lung Cancer ; 123: 91-98, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089602

RESUMO

OBJECTIVES: This open-label, randomized phase II trial evaluated antitumor efficacy of an antiestrogen, fulvestrant, in combination with human epidermal growth factor receptor (EGFR) inhibitor, erlotinib, in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS: Patients with advanced or metastatic NSCLC, ECOG 0-2, previous chemotherapy unless patient refusal, and no prior EGFR-directed therapy were randomized 2:1 to erlotinib 150 mg oral daily plus 500 mg intramuscular fulvestrant on day 1, 15, 29 and every 28 days thereafter or erlotinib alone 150 mg oral daily. The primary end point was objective response rate (ORR); secondary endpoints included progression free survival (PFS) and overall survival (OS). RESULTS: Among 106 randomized patients, 100 received at least one dose of study drug. ORR was 16.4% (11 of 67 patients) for the combination versus 12.1% (4 of 33 patients) for erlotinib (p = 0.77). PFS median 3.5 versus 1.9 months [HR = 0.86, 95% CI (0.52-1.43), p = 0.29] and OS median 9.5 versus 5.8 months [HR = 0.92, 95% CI (0.57-1.48), p = 0.74] numerically favored the combination. In an unplanned subset analysis, among EGFR wild type patients (n = 51), but not EGFR mutant patients (n = 17), median PFS was 3.5 versus 1.7 months [HR = 0.35, 95% CI (0.14-0.86), p = 0.02] and OS was 6.2 versus 5.2 months [HR = 0.72, 95% CI (0.35-1.48), p = 0.37] for combined therapy versus erlotinib, respectively. Notably, EGFR WT patients were more likely to be hormone receptor-positive (either estrogen receptor α- and/or progesterone receptor-positive) compared to EGFR mutant patients (50% versus 9.1%, respectively) (p = 0.03). Treatment was well tolerated with predominant grade 1-2 dermatologic and gastrointestinal adverse effects. CONCLUSION: Addition of fulvestrant to erlotinib was well tolerated, with increased activity noted among EGFR wild type patients compared to erlotinib alone, albeit in an unplanned subset analysis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Cloridrato de Erlotinib/administração & dosagem , Feminino , Fulvestranto/administração & dosagem , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Análise de Sobrevida , Resultado do Tratamento
14.
Steroids ; 72(2): 135-43, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17276470

RESUMO

Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus
15.
Cancer Res ; 65(24): 11287-91, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357134

RESUMO

Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.


Assuntos
Inibidores da Aromatase/uso terapêutico , Aromatase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Nitrilas/uso terapêutico , Triazóis/uso terapêutico , Anastrozol , Androstenodiona/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Ovariectomia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
16.
Cancer Lett ; 374(2): 279-91, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26892043

RESUMO

Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Domínios Proteicos Ricos em Prolina , Receptores de Progesterona/biossíntese , Receptores de Progesterona/genética , Transdução de Sinais
17.
Crit Rev Oncog ; 20(5-6): 373-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27279236

RESUMO

Triple-negative breast cancers (TNBCs) lack estrogen receptor-α (ERα), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) amplification and account for almost half of all breast cancer deaths. This breast cancer subtype largely affects women who are premenopausal, African-American, or have BRCA1/2 mutations. Women with TNBC are plagued with higher rates of distant metastasis that significantly diminish their overall survival and quality of life. Due to their poor response to chemotherapy, patients with TNBC would significantly benefit from development of new targeted therapeutics. Research suggests that the insulin-like growth factor (IGF) family and estrogen receptor beta-1 (ERß1), due to their roles in metabolism and cellular regulation, might be attractive targets to pursue for TNBC management. Here, we review the current state of the science addressing the roles of ERß1 and the IGF family in TNBC. Further, the potential benefit of metformin treatment in patients with TNBC as well as areas of therapeutic potential in the IGF-ERß1 pathway are highlighted.


Assuntos
Antineoplásicos/uso terapêutico , Receptor beta de Estrogênio/efeitos dos fármacos , Terapia de Alvo Molecular , Somatomedinas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Feminino , Humanos
18.
Biomed Res Int ; 2015: 925703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874233

RESUMO

Triple-negative breast cancer (TNBC) occurs in 10-15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERß, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERß expression, we find that ERß1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERß protein. To assess ERß effects on proliferation, ERß expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERß-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERß may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERß1, is significantly expressed in TNBC and stimulates high ERß mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.


Assuntos
Neoplasias da Mama/metabolismo , Receptor beta de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Proliferação de Células , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/genética , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética
19.
PLoS One ; 10(5): e0127600, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26001082

RESUMO

BACKGROUND: Ribonucleotide reductase catalyzes the conversion of ribonucleotide diphosphates to deoxyribonucleotide diphosphates. The functional enzyme consists of two subunits - one large (RRM1) and one small (RRM2 or RRM2b) subunit. Expression levels of each subunit have been implicated in prognostic outcomes in several different types of cancers. EXPERIMENTAL DESIGN: Immunohistochemistry for RRM1 and RRM2 was performed on a lung cancer tissue microarray (TMA) and analyzed. 326 patients from the microarray were included in this study. RESULTS: In non-small cell lung cancer (NSCLC), RRM2 expression was strongly predictive of disease-specific survival in women, non-smokers and former smokers who had quit at least 10 years prior to being diagnosed with lung cancer. Higher expression was associated with worse survival. This was not the case for men, current smokers and those who had stopped smoking for shorter periods of time. RRM1 was not predictive of survival outcomes in any subset of the patient group. CONCLUSION: RRM2, but not RRM1, is a useful predictor of survival outcome in certain subsets of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Prognóstico , Ribonucleosídeo Difosfato Redutase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Fumar , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA