Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 144(46): 21157-21173, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367461

RESUMO

The mechanism of action (MoA) of a clickable fatty acid analogue 8-(2-cyclobuten-1-yl)octanoic acid (DA-CB) has been investigated for the first time. Proteomics, metabolomics, and lipidomics were combined with a network analysis to investigate the MoA of DA-CB against Mycobacterium smegmatis (Msm). The metabolomics results showed that DA-CB has a general MoA related to that of ethionamide (ETH), a mycolic acid inhibitor that targets enoyl-ACP reductase (InhA), but DA-CB likely inhibits a step downstream from InhA. Our combined multi-omics approach showed that DA-CB appears to disrupt the pathway leading to the biosynthesis of mycolic acids, an essential mycobacterial fatty acid for both Msm and Mycobacterium tuberculosis (Mtb). DA-CB decreased keto-meromycolic acid biosynthesis. This intermediate is essential in the formation of mature mycolic acid, which is a key component of the mycobacterial cell wall in a process that is catalyzed by the essential polyketide synthase Pks13 and the associated ligase FadD32. The multi-omics analysis revealed further collateral alterations in bacterial metabolism, including the overproduction of shorter carbon chain hydroxy fatty acids and branched chain fatty acids, alterations in pyrimidine metabolism, and a predominate downregulation of proteins involved in fatty acid biosynthesis. Overall, the results with DA-CB suggest the exploration of this and related compounds as a new class of tuberculosis (TB) therapeutics. Furthermore, the clickable nature of DA-CB may be leveraged to trace the cellular fate of the modified fatty acid or any derived metabolite or biosynthetic intermediate.


Assuntos
Mycobacterium tuberculosis , Ácidos Micólicos , Ácidos Micólicos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium smegmatis/metabolismo , Ácidos Graxos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo
2.
Anal Chem ; 94(47): 16308-16318, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36374521

RESUMO

The accuracy and ease of metabolite assignments from a complex mixture are expected to be facilitated by employing a multispectral approach. The two-dimensional (2D) 1H-13C heteronuclear single quantum coherence (HSQC) and 2D 1H-1H-total correlation spectroscopy (TOCSY) are the experiments commonly used for metabolite assignments. The 2D 1H-13C HSQC-TOCSY and 2D 1H-13C heteronuclear multiple-bond correlation (HMBC) are routinely used by natural products chemists but have seen minimal usage in metabolomics despite the unique information, the nearly complete 1H-1H and 1H-13C and spin systems provided by these experiments that may improve the accuracy and reliability of metabolite assignments. The use of a 13C-labeled feedstock such as glucose is a routine practice in metabolomics to improve sensitivity and to emphasize the detection of specific metabolites but causes severe artifacts and an increase in spectral complexity in the HMBC experiment. To address this issue, the standard HMBC pulse sequence was modified to include carbon decoupling. Nonuniform sampling was also employed for rapid data collection. A dataset of reference 2D 1H-13C HMBC spectra was collected for 94 common metabolites. 13C-13C spin connectivity was then obtained by generating a covariance pseudo-spectrum from the carbon-decoupled HMBC and the 1H-13C HSQC-TOCSY spectra. The resulting 13C-13C pseudo-spectrum provides a connectivity map of the entire carbon backbone that uniquely describes each metabolite and would enable automated metabolite identification.


Assuntos
Artefatos , Metabolômica , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono , Reprodutibilidade dos Testes , Metabolômica/métodos
3.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8449, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30950108

RESUMO

RATIONALE: Successful coupling of a multi-ionization automated platform with commercially available mass spectrometers provides improved coverage of compounds in complex mixtures through implementation of new and traditional ionization methods. The versatility of the automated platform is demonstrated through coupling with mass spectrometers from two different vendors. Standards and complex biological samples were acquired using electrospray ionization (ESI), solvent-assisted ionization (SAI) and matrix-assisted ionization (MAI). METHODS: The MS™ prototype automated platform samples from 96- or 384-well plates as well as surfaces. The platform interfaces with Thermo Fisher Scientific mass spectrometers by replacement of the IonMax source, and on Waters mass spectrometers with additional minor source inlet modifications. The sample is transferred to the ionization region using a fused-silica or metal capillary which is cleaned between acquisitions using solvents. For ESI and SAI, typically 1 µL of sample solution is drawn into the capillary tube and for ESI slowly dispensed near the inlet of the mass spectrometer with voltage placed on the delivering syringe barrel to which the tubing is attached, while for SAI the sample delivery tubing inserts into the inlet without the need for high voltage. For MAI, typically, 0.2 µL of matrix solution is drawn into the syringe before drawing 0.1 µL of the sample solution and dispensing to dry before insertion into the inlet. RESULTS: A comparison study of a mixture of angiotensin I, verapamil, crystal violet, and atrazine representative of peptides, drugs, dyes, and herbicides using SAI, MAI, and ESI shows large differences in ionization efficiency of the various components. Solutions of a mixture of erythromycin and azithromycin in wells of a 384-microtiter well plate were mass analyzed at the rate of ca 1 min per sample using MAI and ESI. In addition, we report the analysis of bacterial extracts using automated MAI and ESI methods. Finally, the ability to perform surface analysis with the automated platform is also demonstrated by directly analyzing dyes separated on a thin-layer chromatography (TLC) plate and compounds extracted from the surface of a beef liver tissue section. CONCLUSIONS: The prototype multi-ionization automated platform offers solid matrix introduction used with MAI, as well as solution introduction using either ESI or SAI. The combination of ionization methods extends the types of compounds which are efficiently ionized and is especially valuable with complex mixtures as demonstrated for bacterial extracts. While coupling of the automated multi-ionization platform to Thermo and Waters mass spectrometers is demonstrated, it should be possible to interface it with most commercial mass spectrometers.

4.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8829, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32402102

RESUMO

RATIONALE: The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS: The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS: Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS: Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.


Assuntos
Espectrometria de Massas , Animais , Bactérias/química , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Camundongos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Vácuo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29109158

RESUMO

Staphylococcus aureus is a major human pathogen whose infections are increasingly difficult to treat due to increased antibiotic resistance, including resistance to vancomycin. Vancomycin-intermediate S. aureus (VISA) strains develop resistance to vancomycin through adaptive changes that are incompletely understood. Central to this adaptation are metabolic changes that permit growth in the presence of vancomycin. To define the metabolic changes associated with adaptive resistance to vancomycin in S. aureus, the metabolomes of a vancomycin-sensitive and VISA strain pair isolated from the same patient shortly after vancomycin therapy began and following vancomycin treatment failure were analyzed. The metabolic adaptations included increases in acetogenesis, carbon flow through the pentose phosphate pathway, wall teichoic acid and peptidoglycan precursor biosynthesis, purine biosynthesis, and decreased tricarboxylic acid (TCA) cycle activity. The significance of these metabolic pathways for vancomycin-intermediate susceptibility was determined by assessing the synergistic potential of human-use-approved inhibitors of these pathways in combination with vancomycin against VISA strains. Importantly, inhibitors of amino sugar and purine biosynthesis acted synergistically with vancomycin to kill a diverse set of VISA strains, suggesting that combinatorial therapy could augment the efficacy of vancomycin even in patients infected with VISA strains.


Assuntos
Adaptação Fisiológica/fisiologia , Antibacterianos/farmacologia , Fosfomicina/farmacologia , Mercaptopurina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Resistência a Vancomicina/fisiologia , Vancomicina/farmacologia , Ciclo do Ácido Cítrico/fisiologia , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Via de Pentose Fosfato/fisiologia , Staphylococcus aureus/isolamento & purificação
6.
J Proteome Res ; 16(3): 1270-1279, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121156

RESUMO

In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc2155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc2155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.


Assuntos
Alanina/biossíntese , Redes e Vias Metabólicas , Mycobacterium smegmatis/metabolismo , Alanina/metabolismo , Alanina Racemase/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Mycobacterium smegmatis/genética , Peptidoglicano/biossíntese , Transaminases/metabolismo
7.
Proteomics ; 16(11-12): 1695-706, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27093917

RESUMO

Matrix-assisted ionization (MAI) is a newly discovered method for converting compounds from the solid phase to gas-phase ions having charge states similar to electrospray ionization (ESI), but without the need for high-energy sources such as lasers or high voltage. Laserspray ionization (LSI) is a subset of MAI that uses a laser to provide high spatial resolution analyses, but the laser is not directly involved in the ionization process. These methods produce multiply-charged analyte ions that are useful for characterizing compounds directly from surfaces using advanced characterization technologies. Because the multiply-charged ions originate from charged matrix clusters, efficient desolvation of the matrix is a prerequisite. Here, we report on the utility of collision-induced dissociation (CID) and electron transfer dissociation (ETD) coupled to mass spectrometry using several MAI and LSI matrices for peptide and protein characterization employing mass spectrometers from two manufacturers. The information obtained is similar to that using ESI for most analyses and superior to matrix-assisted laser desorption/ionization (MALDI) as is shown for intact proteins and protein digests directly from mouse brain tissue sections. The ionization processes are soft so that posttranslational modification (e.g. phosphorylation) sites are readily determined. Instances where ETD or CID in conjunction with MAI failed are attributed to lack of desolvation of charged matrix:analyte particles.


Assuntos
Encéfalo/metabolismo , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humanos , Camundongos , Peptídeos/química , Proteínas/química
8.
J Proteome Res ; 15(4): 1205-12, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26975873

RESUMO

The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.


Assuntos
Acetato Quinase/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Metabolômica , Fosfato Acetiltransferase/genética , Staphylococcus aureus/genética , Acetato Quinase/deficiência , Trifosfato de Adenosina/biossíntese , Aerobiose , Anaerobiose , Proteínas de Bactérias/metabolismo , Isótopos de Carbono , Glucose/metabolismo , Homeostase , L-Lactato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana , Mutação , NAD/metabolismo , Oxirredução , Fosfato Acetiltransferase/deficiência , Staphylococcus aureus/metabolismo
9.
Crit Rev Biochem Mol Biol ; 48(5): 409-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23883414

RESUMO

Mass spectrometry (MS) continues to improve at a rapid pace as most prominently witnessed for mass analyzers and fragmentation technology. Ionization methods have also seen resurgence with ambient ionization approaches gaining a foothold because they often provide a convenient and direct means of sample analysis. Nevertheless, a vast majority of biological analyses using MS apply electrospray ionization or matrix-assisted laser desorption/ionization, methods introduced in the 1980s, or variants thereof. To further advance applications by MS such as protein characterization, and, for example, addressing their location within specific cell types, the progress in mass analyzer and fragmentation technology needs to be matched with similar advances in ionization technology. It is imperative to seek ionization methods that more efficiently convert molecules, to gas-phase ions in a way that allows high transfer efficiency to the mass analyzer and subsequently the detector to achieve a more complete picture of sample composition. This review provides a snapshot of fundamental aspects of new ionization methods and potential biological and medical applications.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Diagnóstico por Imagem , Genômica , Humanos
10.
J Proteome Res ; 13(2): 1065-76, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24303782

RESUMO

d-Cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR) drug resistant strains of Mycobacterium tuberculosis . d-Cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of alanine racemase (Alr) and d-alanine-d-alanine ligase (Ddl). Although the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of d-alanyl-d-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of d-alanine, thus allowing DCS to outcompete d-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce d-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors.


Assuntos
Ciclosserina/farmacologia , Metabolômica , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/metabolismo , Ligantes , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Ressonância Magnética Nuclear Biomolecular
11.
J Mass Spectrom ; 59(6): e5018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736378

RESUMO

This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.

12.
J Bacteriol ; 195(13): 3035-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625849

RESUMO

During growth under conditions of glucose and oxygen excess, Staphylococcus aureus predominantly accumulates acetate in the culture medium, suggesting that the phosphotransacetylase-acetate kinase (Pta-AckA) pathway plays a crucial role in bacterial fitness. Previous studies demonstrated that these conditions also induce the S. aureus CidR regulon involved in the control of cell death. Interestingly, the CidR regulon is comprised of only two operons, both encoding pyruvate catabolic enzymes, suggesting an intimate relationship between pyruvate metabolism and cell death. To examine this relationship, we introduced ackA and pta mutations in S. aureus and tested their effects on bacterial growth, carbon and energy metabolism, cid expression, and cell death. Inactivation of the Pta-AckA pathway showed a drastic inhibitory effect on growth and caused accumulation of dead cells in both pta and ackA mutants. Surprisingly, inactivation of the Pta-AckA pathway did not lead to a decrease in the energy status of bacteria, as the intracellular concentrations of ATP, NAD(+), and NADH were higher in the mutants. However, inactivation of this pathway increased the rate of glucose consumption, led to a metabolic block at the pyruvate node, and enhanced carbon flux through both glycolysis and the tricarboxylic acid (TCA) cycle. Intriguingly, disruption of the Pta-AckA pathway also induced the CidR regulon, suggesting that activation of alternative pyruvate catabolic pathways could be an important survival strategy for the mutants. Collectively, the results of this study demonstrate the indispensable role of the Pta-AckA pathway in S. aureus for maintaining energy and metabolic homeostasis during overflow metabolism.


Assuntos
Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/fisiologia , Glicólise/genética , Glicólise/fisiologia , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Staphylococcus aureus/genética
13.
Anal Chem ; 83(20): 7591-4, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21899326

RESUMO

Inlet ionization is a new approach for ionizing both small and large molecules in solids or liquid solvents with high sensitivity. The utility of solvent based inlet ionization mass spectrometry (MS) as a method for analysis of volatile and nonvolatile compounds eluting from a liquid chromatography (LC) column is demonstrated. This new LC/MS approach uses reverse phase solvent systems common to electrospray ionization MS. The first LC/MS analyses using this novel approach produced sharp chromatographic peaks and good quality full mass range mass spectra for over 25 peptides from injection of only 1 pmol of a tryptic digest of bovine serum albumin using an eluent flow rate of 55 µL min(-1). Similarly, full acquisition LC/MS/MS of the MH(+) ion of the drug clozapine, using the same solvent flow rate, produced a signal-to-noise ratio of 54 for the major fragment ion with injection of only 1 µL of a 2 ppb solution. LC/MS results were acquired on two different manufacturer's mass spectrometers using a Waters Corporation NanoAcquity liquid chromatograph.

14.
Anal Chem ; 83(14): 5469-75, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21678939

RESUMO

A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.


Assuntos
Floroglucinol/análogos & derivados , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bovinos , Galinhas , Insulina/química , Íons/química , Muramidase/química , Floroglucinol/química , Sensibilidade e Especificidade , Ubiquitina/química , Vácuo
15.
Methods Mol Biol ; 1996: 217-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127560

RESUMO

Metabolomics has been successfully applied to study neurological and neurodegenerative disorders including Parkinson's disease for (1) the identification of potential biomarkers of onset and disease progression; (2) the identification of novel mechanisms of disease progression; and (3) the assessment of treatment prognosis and outcome. Reproducible and efficient extraction of metabolites is imperative to the success of any metabolomics investigation. Unlike other omics techniques, the composition of the metabolome can be negatively impacted by the preparation, processing, and handling of these samples. The proper choice of data collection, preprocessing, and processing protocols is similarly important to the design of an effective metabolomics experiment. Likewise, the correct application of univariate and multivariate statistical methods is essential for providing biologically relevant insights. In this chapter, we have outlined a detailed metabolomics workflow that addresses all of these issues. A step-by-step protocol from the preparation of neuronal cells and metabolomic tissue samples to their metabolic analyses using nuclear magnetic resonance, mass spectrometry, and chemometrics is presented.


Assuntos
Encéfalo/patologia , Metabolômica/métodos , Doença de Parkinson/diagnóstico , Animais , Astrócitos/metabolismo , Biomarcadores/análise , Biomarcadores/química , Encéfalo/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/química , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos
16.
Vet Sci ; 6(2)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137605

RESUMO

Mycobacterium avium subspecies paratuberculosis (Map) is the etiologic agent of Johne's disease in ruminants and has been associated with Crohn's disease in humans. An effective control of Map by either vaccines or chemoprophylaxis is a paramount need for veterinary and possibly human medicine. Given the importance of fatty acids in the biosynthesis of mycolic acids and the mycobacterial cell wall, we tested novel amphiphilic C10 and C18 cyclobutene and cyclobutane fatty acid derivatives for Map inhibition. Microdilution minimal inhibitory concentrations (MIC) with 5 or 7 week endpoints were measured in Middlebrook 7H9 base broth media. We compared the Map MIC results with those obtained previously with Mycobacterium tuberculosis and Mycobacterium smegmatis. Several of the C18 compounds showed moderate efficacy (MICs 392 to 824 µM) against Map, while a higher level of inhibition (MICs 6 to 82 µM) was observed for M. tuberculosis for select analogs from both the C10 and C18 groups. For most of these analogs tested in M. smegmatis, their efficacy decreased in the presence of bovine or human serum albumin. Compound 5 (OA-CB, 1-(octanoic acid-8-yl)-2-octylcyclobutene) was identified as the best chemical lead against Map, which suggests derivatives with better pharmacodynamics may be of interest for evaluation in animal models.

17.
J Am Soc Mass Spectrom ; 30(6): 1133-1147, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062287

RESUMO

Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened.

18.
Prog Nucl Magn Reson Spectrosc ; 100: 1-16, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552170

RESUMO

Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique strengths. NMR requires minimal sample handling without the need for chromatography, is easily quantitative, and provides multiple means of metabolite identification, but is limited to detecting the most abundant metabolites (⩾1µM). Conversely, mass spectrometry has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and has a higher resolution (∼103-104) and dynamic range (∼103-104), but quantitation is a challenge and sample complexity may limit metabolite detection because of ion suppression. Consequently, liquid chromatography (LC) or gas chromatography (GC) is commonly employed in conjunction with MS, but this may lead to other sources of error. As a result, NMR and mass spectrometry are highly complementary, and combining the two techniques is likely to improve the overall quality of a study and enhance the coverage of the metabolome. While the majority of metabolomic studies use a single analytical source, there is a growing appreciation of the inherent value of combining NMR and MS for metabolomics. An overview of the current state of utilizing both NMR and MS for metabolomics will be presented.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Humanos , Marcação por Isótopo
19.
Metabolites ; 7(2)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538683

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ "hijacks" the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA