Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO Rep ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890452

RESUMO

Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited. To address this question, we used neural stem cells to analyze the function of the H3K9me2 demethylase PHF2, which is crucial for progenitor proliferation. Through mass-spectroscopy and genome-wide assays, we show that PHF2 interacts with heterochromatin components and is enriched at pericentromeric heterochromatin (PcH) boundaries where it maintains transcriptional activity. This binding is essential for silencing the satellite repeats, preventing DNA damage and genome instability. PHF2's depletion increases the transcription of heterochromatic repeats, accompanied by a decrease in H3K9me3 levels and alterations in PcH organization. We further show that PHF2's PHD and catalytic domains are crucial for maintaining PcH stability, thereby safeguarding genome integrity. These results highlight the multifaceted nature of PHF2's functions in maintaining heterochromatin stability and regulating gene expression during neural development. Our study unravels the intricate relationship between heterochromatin stability and progenitor proliferation during mammalian neurogenesis.

2.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081130

RESUMO

Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Histona Desmetilases/genética , Fatores de Transcrição/genética , Animais , Astrócitos/citologia , Sítios de Ligação , Biomarcadores , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Histona Desmetilases/metabolismo , Histonas/metabolismo , Camundongos , Modelos Biológicos , Neurogênese , Neurônios/metabolismo , Ligação Proteica , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 116(39): 19464-19473, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488723

RESUMO

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.


Assuntos
Dano ao DNA , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Metilação de DNA , Células-Tronco Embrionárias , Epigênese Genética , Estudo de Associação Genômica Ampla , Histona Desmetilases/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/enzimologia , Neurogênese/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887017

RESUMO

The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus.


Assuntos
Histona Desmetilases , Histona Desmetilases com o Domínio Jumonji , Núcleo Celular/metabolismo , Desmetilação , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo
5.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29438503

RESUMO

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos/genética , Neurogênese/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Animais , Sistemas CRISPR-Cas/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 45(7): 3800-3811, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28100697

RESUMO

A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.


Assuntos
Histona Desmetilases/metabolismo , Interferon gama/farmacologia , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular , Cromatina/metabolismo , Inativação Gênica , Histona Desacetilase 1/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
7.
Development ; 139(15): 2681-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782721

RESUMO

Neural development requires crosstalk between signaling pathways and chromatin. In this study, we demonstrate that neurogenesis is promoted by an interplay between the TGFß pathway and the H3K27me3 histone demethylase (HDM) JMJD3. Genome-wide analysis showed that JMJD3 is targeted to gene promoters by Smad3 in neural stem cells (NSCs) and is essential to activate TGFß-responsive genes. In vivo experiments in chick spinal cord revealed that the generation of neurons promoted by Smad3 is dependent on JMJD3 HDM activity. Overall, these findings indicate that JMJD3 function is required for the TGFß developmental program to proceed.


Assuntos
Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neurônios/metabolismo , Proteína Smad3/metabolismo , Animais , Embrião de Galinha , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Medula Espinal/embriologia , Fator de Crescimento Transformador beta/metabolismo
8.
Cell Tissue Res ; 359(1): 87-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24950624

RESUMO

Central nervous system (CNS) development is driven by coordinated actions of developmental signals and chromatin regulators that precisely regulate gene expression patterns. Histone methylation is a regulatory mechanism that controls transcriptional programs. In the last 10 years, several histone demethylases (HDM) have been identified as important players in neural development, and their implication in cell fate decisions is beginning to be recognized. Identification of the physiological roles of these enzymes and their molecular mechanisms of action will be necessary for completely understanding the process that ultimately generates different neural cells in the CNS. In this review, we provide an overview of the Jumonji family of HDMs involved in neurodevelopment, and we discuss their roles during neural fate establishment and neuronal differentiation.


Assuntos
Histona Desmetilases/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese , Animais , Humanos , Modelos Biológicos , Família Multigênica , Sistema Nervoso/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia
9.
Carcinogenesis ; 35(10): 2194-202, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24853677

RESUMO

Cell transformation is clearly linked to epigenetic changes. However, the role of the histone-modifying enzymes in this process is still poorly understood. In this study, we investigated the contribution of the histone acetyltransferase (HAT) enzymes to Ras-mediated transformation. Our results demonstrated that lysine acetyltransferase 5, also known as Tip60, facilitates histone acetylation of bulk chromatin in Ras-transformed cells. As a consequence, global H4 acetylation (H4K8ac and H4K12ac) increases in Ras-transformed cells, rendering a more decompacted chromatin than in parental cells. Furthermore, low levels of CREB-binding protein (CBP) lead to hypoacetylation of retinoblastoma 1 (Rb1) and cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27Kip1) tumour suppressor gene promoters to facilitate Ras-mediated transformation. In agreement with these data, overexpression of Cbp counteracts Ras transforming capability in a HAT-dependent manner. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.


Assuntos
Proteína de Ligação a CREB/metabolismo , Transformação Celular Neoplásica/genética , Genes ras , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Proteína de Ligação a CREB/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Histona Acetiltransferases/genética , Lisina Acetiltransferase 5 , Camundongos , Células NIH 3T3/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Transativadores/genética
10.
Neurobiol Dis ; 67: 49-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657916

RESUMO

Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Galinhas , Dosagem de Genes , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Dados de Sequência Molecular , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
11.
Nucleic Acids Res ; 40(19): 9429-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22850744

RESUMO

PHF8 is a histone demethylase associated with X-linked mental retardation. It has been described as a transcriptional co-activator involved in cell cycle progression, but its physiological role is still poorly understood. Here we show that PHF8 controls the expression of genes involved in cell adhesion and cytoskeleton organization such as RhoA, Rac1 and GSK3ß. A lack of PHF8 not only results in a cell cycle delay but also in a disorganized actin cytoskeleton and impaired cell adhesion. Our data demonstrate that PHF8 directly regulates the expression of these genes by demethylating H4K20me1 at promoters. Moreover, c-Myc transcription factor cooperates with PHF8 to regulate the analysed promoters. Further analysis in neurons shows that depletion of PHF8 results in down-regulation of cytoskeleton genes and leads to a deficient neurite outgrowth. Overall, our results suggest that the mental retardation phenotype associated with loss of function of PHF8 could be due to abnormal neuronal connections as a result of alterations in cytoskeleton function.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Regulação da Expressão Gênica , Histona Desmetilases/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Adesão Celular/genética , Linhagem Celular , Células Cultivadas , Regulação para Baixo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células HeLa , Histona Desmetilases/antagonistas & inibidores , Humanos , Camundongos , Neuritos/ultraestrutura , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/antagonistas & inibidores , alfa Catenina/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
12.
Development ; 137(17): 2915-25, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667911

RESUMO

During spinal cord development, the combination of secreted signaling proteins and transcription factors provides information for each neural type differentiation. Studies using embryonic stem cells show that trimethylation of lysine 27 of histone H3 (H3K27me3) contributes to repression of many genes key for neural development. However, it remains unclear how H3K27me3-mediated mechanisms control neurogenesis in developing spinal cord. Here, we demonstrate that H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. Our study indicates that expression of Noggin, a BMP extracellular inhibitor, is repressed by H3K27me3. Moreover, we show that Noggin expression is induced by BMP pathway signaling, generating a negative-feedback regulatory loop. In response to BMP pathway activation, JMJD3 histone demethylase interacts with the Smad1/Smad4 complex to demethylate and activate the Noggin promoter. Together, our data reveal how the BMP signaling pathway restricts its own activity in developing spinal cord by modulating H3K27me3 levels at the Noggin promoter.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Histonas/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células , Embrião de Galinha , Primers do DNA/genética , Epigênese Genética , Histonas/química , Humanos , Metilação , Modelos Neurológicos , Neurogênese , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Medula Espinal/citologia
13.
Nat Commun ; 13(1): 3263, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672304

RESUMO

Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFß-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFß pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFß pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFß-driven response during mammalian neurogenesis.


Assuntos
Células-Tronco Neurais , Fator de Crescimento Transformador beta , Animais , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Genoma , Mamíferos/genética , Células-Tronco Neurais/metabolismo , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Nucleic Acids Res ; 35(6): 1958-68, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17341466

RESUMO

Simian Virus 40 (SV40) large T antigen (T Ag) is a multifunctional viral oncoprotein that regulates viral and cellular transcriptional activity. However, the mechanisms by which such regulation occurs remain unclear. Here we show that T antigen represses CBP-mediated transcriptional activity. This repression is concomitant with histone H3 deacetylation and is TSA sensitive. Moreover, our results demonstrate that T antigen interacts with HDAC1 in vitro in an Rb-independent manner. In addition, the overexpression of HDAC1 cooperates with T antigen to antagonize CBP transactivation function and correlates with chromatin deacetylation of the TK promoter. Finally, decreasing HDAC1 levels with small interfering RNA (siRNA) partially abolishes T antigen-induced repression. These findings highlight the importance of the histone acetylation/deacetylation balance in the cellular transformation mediated by oncoviral proteins.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Proteína de Ligação a CREB/antagonistas & inibidores , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Cromatina/enzimologia , Humanos , Proteínas Repressoras/metabolismo , Transcrição Gênica
15.
Elife ; 72018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095408

RESUMO

Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins' activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Sítios de Ligação , Embrião de Galinha , Ligação Proteica
16.
Biochem J ; 398(2): 215-24, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16704373

RESUMO

The CBP [CREB (cAMP-response-element-binding protein)-binding protein]/p300 acetyltransferases function as transcriptional co-activators and play critical roles in cell differentiation and proliferation. Accumulating evidence shows that alterations of the CBP/p300 protein levels are linked to human tumours. In the present study, we show that the levels of the CBP/p300 co-activators are decreased dramatically by continuous PDGF (platelet-derived growth factor) and Ras signalling pathway activation in NIH 3T3 fibroblasts. This effect occurs by reducing the expression levels of the CBP/p300 genes. In addition, CBP and p300 are degraded by the 26 S proteasome pathway leading to an overall decrease in the levels of the CBP/p300 proteins. Furthermore, we provide evidence that Mdm2 (murine double minute 2), in the presence of active H-Ras or N-Ras, induces CBP/p300 degradation in NIH 3T3 cells. These findings support a novel mechanism for modulating other signalling transduction pathways that require these common co-activators.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Histona Acetiltransferases/genética , Camundongos , Células NIH 3T3 , Fator de Crescimento Derivado de Plaquetas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Valina/genética , Valina/metabolismo , Fatores de Transcrição de p300-CBP , Proteínas ras/genética
17.
Nucleic Acids Res ; 31(12): 3114-22, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12799439

RESUMO

Histone acetyltransferases (HATs) play a key role in transcription control, cell proliferation and differentiation by modulating chromatin structure; however, little is known about their own regulation. Here we show that expression of the viral oncoprotein SV40 T antigen increases histone acetylation and global cellular HAT activities. In addition, it enhances CREB-binding protein HAT activity and modulates its transcriptional activity. Finally, we show that inhibition of cellular histone deacetylases by trichostatin A increases the SV40 infectivity rate. These findings highlight the importance of histone acetylation in the regulation of the cell cycle by oncoviral proteins.


Assuntos
Acetiltransferases/metabolismo , Antígenos Transformantes de Poliomavirus/farmacologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Proteína de Ligação a CREB , Linhagem Celular , Ativação Enzimática , Histona Acetiltransferases , Inibidores de Histona Desacetilases , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Vírus 40 dos Símios/imunologia , Vírus 40 dos Símios/patogenicidade , Ativação Transcricional
18.
Neurogenesis (Austin) ; 3(1): e1250034, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28090544

RESUMO

During early stages of neural development, neuroepithelial cells translocate their nuclei along the apicobasal axis in a harmonized manner with the cell cycle. How cell cycle progression and neuroepithelium polarity are coordinated remains unclear. It has been proposed that developmental cues, epigenetic mechanisms and cell cycle regulators must be linked in order to orchestrate these processes. We have recently discovered that a master epigenetic factor, EZH2 is essential to coordinate these events. EZH2 directly represses the cell cycle regulator p21WAF1/CIP in the chicken spinal cord. By doing so, EZH2 controls neural progenitor cell renewal and fine-tunes Rho signaling pathway, which is essential to maintain neuroepithelial structure. Our findings point to a new role of EZH2 during development that could have potential implication in other areas as cancer.

19.
Open Biol ; 6(4): 150227, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27248655

RESUMO

The function of EZH2 as a transcription repressor is well characterized. However, its role during vertebrate development is still poorly understood, particularly in neurogenesis. Here, we uncover the role of EZH2 in controlling the integrity of the neural tube and allowing proper progenitor proliferation. We demonstrate that knocking down the EZH2 in chick embryo neural tubes unexpectedly disrupts the neuroepithelium (NE) structure, correlating with alteration of the Rho pathway, and reduces neural progenitor proliferation. Moreover, we use transcriptional profiling and functional assays to show that EZH2-mediated repression of p21(WAF1/CIP1) contributes to both processes. Accordingly, overexpression of cytoplasmic p21(WAF1/CIP1) induces NE structural alterations and p21(WAF1/CIP1) suppression rescues proliferation defects and partially compensates for the structural alterations and the Rho activity. Overall, our findings describe a new role of EZH2 in controlling the NE integrity in the neural tube to allow proper progenitor proliferation.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Proteínas Repressoras/metabolismo , Animais , Polaridade Celular , Proliferação de Células , Embrião de Galinha , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Regiões Promotoras Genéticas/genética
20.
Mol Biol Cell ; 24(3): 351-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243002

RESUMO

JMJD3 H3K27me3 demethylase plays an important role in the transcriptional response to different signaling pathways; however, the mechanism by which it facilitates transcription has been unclear. Here we show that JMJD3 regulates transcription of transforming growth factor ß (TGFß)-responsive genes by promoting RNA polymerase II (RNAPII) progression along the gene bodies. Using chromatin immunoprecipitation followed by sequencing experiments, we show that, upon TGFß treatment, JMJD3 and elongating RNAPII colocalize extensively along the intragenic regions of TGFß target genes. According to these data, genome-wide analysis shows that JMJD3-dependent TGFß target genes are enriched in H3K27me3 before TGFß signaling pathway activation. Further molecular analyses demonstrate that JMJD3 demethylates H3K27me3 along the gene bodies, paving the way for the RNAPII progression. Overall these findings uncover the mechanism by which JMJD3 facilitates transcriptional activation.


Assuntos
Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/fisiologia , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunoprecipitação da Cromatina , Quinase 9 Dependente de Ciclina/metabolismo , Genoma , Células HEK293 , Humanos , Metilação , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA , Proteína Smad3/metabolismo , Sítio de Iniciação de Transcrição , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA