RESUMO
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Assuntos
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiologia de Alimentos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificaçãoRESUMO
Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms, wildland fires, and volcano eruptions. Only microbial cells that survive the various atmospheric stressors during their transportation will deposit and colonize new environments. These stressors include desiccation, oxidative stress, solar radiation, osmotic shock, and freeze-thaw cycles. In this paper, we specifically studied the survival of representative microbial model strains isolated from the atmosphere over pristine volcanic landscapes to understand their potential to successfully disperse to novel terrestrial environments. In line with previous studies, we found that the most stringent selection factors were the freeze-thaw and osmotic shock cycles and that the strains affiliated with Proteobacteria and Ascomycota were the best to survive simulated atmospheric stresses. Specifically, isolates belonging to Paracoccus marinus, Janthinobacterium rivuli, and Sarocladium kiliense exhibited the highest levels of resistance to atmospheric stress. However, the number of strains tested in our study was limited and caution should be taken when generalizing these findings.
Assuntos
Congelamento , IslândiaRESUMO
Novel thermophilic heterotrophic bacteria were isolated from the subsurface of the volcanic island Surtsey off the south coast of Iceland. The strains were isolated from tephra core and borehole fluid samples collected below 70 m depth. The Gram-negative bacteria were rod-shaped (0.3-0.4 µm wide, 1.5-7 µm long), aerobic, non-sporulating and non-motile. Optimal growth was observed at 70 °C, at pH 7-7.5 and with 1% NaCl. Phylogenetic analysis identified the strains as members of the genus Rhodothermus. The type strain, ISCAR-7401T, was genetically distinct from its closest relatives Rhodothermus marinus DSM 4252T and Rhodothermus profundi PRI 2902T based on 16S rRNA gene sequence similarity (95.81 and 96.01%, respectively), genomic average nucleotide identity (73.73 and 72.61%, respectively) and digital DNA-DNA hybridization (17.6 and 16.9%, respectively). The major fatty acids of ISCAR-7401T were iso-C17:0, anteiso-C15:0, anteiso-C17:0 and iso-C15:0 (>10 %). The major isoprenoid quinone was MK-7 while phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminophospholipid and a phospholipid were the predominant polar lipid components. Based on comparative chemotaxonomic, genomic and phylogenetic analyses, we propose that the isolated strain represents a novel species of the genus Rhodothermus with the name Rhodothermus bifroesti sp. nov. The type strain is ISCAR-7401T (=DSM 112103T=CIP 111906T).
Assuntos
Filogenia , Rhodothermus , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Islândia , Ilhas , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodothermus/citologia , Rhodothermus/isolamento & purificação , Análise de Sequência de DNARESUMO
The initial handling of marine fish on board fishing vessels is crucial to retain freshness and ensure an extended shelf life of the resulting fresh products. Here the effect of onboard chitosan treatment of whole, gutted Atlantic cod (Gadus morhua) was studied by evaluating the quality and shelf life of loins processed six days post-catch and packaged in air or modified atmosphere (% CO2/O2/N2: 55/5/40) and stored superchilled for 11 and 16 days, respectively. Sensory evaluation did not reveal a clear effect of chitosan treatment on sensory characteristics, length of freshness period or shelf life of loins under either packaging conditions throughout the storage period. However, directly after loin processing, microbiological analysis of loins showed that onboard chitosan treatment led to significantly lower total viable counts as well as lower counts of specific spoilage organisms (SSO), such as H2S-producers and Pseudomonas spp., compared to the untreated group. In addition, the culture-independent approach revealed a lower bacterial diversity in the chitosan-treated groups compared to the untreated groups, independently of packaging method. Partial 16S rRNA gene sequences belonging to Photobacterium dominated all sample groups, indicating that this genus was likely the main contributor to the spoilage process.
Assuntos
Bactérias/efeitos dos fármacos , Quitosana/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Gadus morhua/microbiologia , Alimentos Marinhos/microbiologia , Animais , Atmosfera , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Temperatura Baixa , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Humanos , Alimentos Marinhos/análise , PaladarRESUMO
The marine sponge Halichondria panicea inhabits coastal areas around the globe and is a widely studied sponge species in terms of its biology, yet the ecological functions of its dominant bacterial symbiont 'Candidatus Halichondribacter symbioticus' remain unknown. Here, we present the draft genome of 'Ca. H. symbioticus' HS1 (2.8 Mbp, ca. 87.6% genome coverage) recovered from the sponge metagenome of H. panicea in order to study functions and symbiotic interactions at the genome level. Functional genome comparison of HS1 against closely related free-living seawater bacteria revealed a reduction of genes associated with carbohydrate transport and transcription regulation, pointing towards a limited carbohydrate metabolism, and static transcriptional dynamics reminiscent of other bacterial symbionts. In addition, HS1 was enriched in sponge symbiont specific gene families related to host-symbiont interactions and defence. Similarity in the functional gene repertoire between HS1 and a phylogenetically more distant symbiont in the marine sponge Aplysina aerophoba, based on COG category distribution, suggest a convergent evolution of symbiont specific traits and general metabolic features. This warrants further investigation into convergent genomic evolution of symbionts across different sponge species and habitats.
Assuntos
Genoma Bacteriano/genética , Poríferos/microbiologia , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Aclimatação/genética , Animais , Transporte Biológico/genética , Metabolismo dos Carboidratos/genética , Genômica , Estilo de Vida , Metagenoma/genética , Filogenia , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Simbiose/genéticaRESUMO
The thermophilic bacterium Thermoactinomyces vulgaris strain ISCAR 2354, isolated from a coastal hydrothermal vent in Iceland, was shown to contain thermoactinoamide A (1), a new cyclic hexapeptide composed of mixed d and l amino acids, along with five minor analogues (2-6). The structure of 1 was determined by one- and two-dimensional NMR spectroscopy, high-resolution tandem mass spectrometry, and advanced Marfey's analysis of 1 and of the products of its partial hydrolysis. Thermoactinoamide A inhibited the growth of Staphylococcus aureus ATCC 6538 with an MIC value of 35 µM. On the basis of literature data and this work, cyclic hexapeptides with mixed d/l configurations, one aromatic amino acid residue, and a prevalence of lipophilic residues can be seen as a starting point to define a new, easily accessible scaffold in the search for new antibiotic agents.
Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Thermoactinomyces/química , Antibacterianos/química , Estrutura Molecular , Peptídeos Cíclicos/química , Espectrometria de Massas em TandemRESUMO
Microorganisms released into the atmosphere by various disturbances can travel significant distances before depositing, yet their impact on community assembly remains unclear. To address this, we examined atmospheric and lithospheric bacterial communities in 179 samples collected at two distinct Icelandic volcanic sites: a small volcanic island Surtsey, and a volcanic highland Fimmvörðuháls using 16S rRNA amplicon sequencing. Airborne microbial communities were similar between sites while significant differences emerged in the communities on lava rocks after 1-year exposure. SourceTracker analysis revealed distinct bacterial populations in the atmosphere and the lava rocks with surrounding soil contributed more significantly to lava rock microbial composition. Nevertheless, shared genera among air, rocks, and local sources, suggested potential exchange between these environments. The prevalent genera shared between rocks and potential sources exhibited stress-resistant properties, likely helping their survival during air transportation and facilitating their colonization of the rocks. We hypothesize that the atmosphere serves as a conduit for locally sourced microbes and stress-resistant distant-sourced microbes. Additionally, bacterial communities on the lava rocks of Fimmvörðuháls showed remarkable similarity after 1 and 9 years of exposure, suggesting rapid establishment. Our study reveals that atmospheric deposition significantly influences bacterial community formation, potentially influencing ecosystem dynamics and microbial communities' resilience.
RESUMO
A study was conducted in fish processing facilities to investigate the microbial composition, microbial metabolic potential, and distribution of antibiotic resistance genes. Whole metagenomic sequencing was used to analyze microbial communities from different processing rooms, operators and fish products. Taxonomic analyses identified the genera Pseudomonas and Psychrobacter as the most prevalent bacteria. A Principal Component Analysis revealed a distinct separation between fish product and environmental samples, as well as differences between fish product samples from companies processing either Gadidae or Salmonidae fish. Some particular bacterial genera and species were associated with specific processing rooms and operators. Metabolic analysis of metagenome assembled genomes demonstrated variations in microbiota metabolic profiles of microbiota across rooms and fish products. The study also examined the presence of antibiotic-resistance genes in fish processing environments, contributing to the understanding of microbial dynamics, metabolic potential, and implications for fish spoilage.
RESUMO
Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.
Assuntos
Microbiota , DNA/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Metagenoma , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodosRESUMO
Hákarl is a unique traditional Icelandic product and is obtained by fermenting and drying Greenland shark (Somniosus microcephalus). However, little is known about the chemical and microbial changes occurring during the process. In this small-scale industrial study, fresh and frozen shark meat was fermented for eight and seven weeks, respectively, and then dried for five weeks. During the fermentation, trimethylamine N-oxide levels decreased to below the limit of detection within five weeks and pH increased from about 6 to 9. Simultaneously, trimethylamine and dimethylamine levels increased significantly. Total viable plate counts, and specific spoilage organisms increased during the first weeks of the fermentation period but decreased during drying. Culture-independent analyses (16S rRNA) revealed gradual shifts in the bacterial community structure as fermentation progressed, dividing the fermentation process into three distinct phases but stayed rather similar throughout the drying process. During the first three weeks of fermentation, Photobacterium was dominant in the fresh group, compared to Pseudoalteromonas in the frozen group. However, as the fermentation progressed, the groups became more alike with Atopostipes, Pseudomonas and Tissierella being dominant. The PCA analysis done on the chemical variables and 16S rRNA analysis variables confirmed the correlation between high concentrations of TMAO and Pseudoalteromonas, and Photobacterium at the initial fermentation phase. During the final fermentation phase, correlation was detected between high concentrations of TMA/DMA and Atopostipes, Pseudomonas and Tissierella. The results indicate the possibility to shortening the fermentation period and it is suggested that the microbial community can potentially be standardized with starter cultures to gain an optimal fermentation procedure.
RESUMO
Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms and volcanic eruptions. Before they reach their deposition site, they experience stressful atmospheric conditions which preclude the successful dispersal of a large fraction of cells. In this study, our objectives were to assess and compare the atmospheric and lithospheric bacterial cultivable diversity of two geographically different Icelandic volcanic sites: the island Surtsey and the Fimmvörðuháls mountain, to predict the origin of the culturable microbes from these sites, and to select airborne candidates for further investigation. Using a combination of MALDI Biotyper analysis and partial 16S rRNA gene sequencing, a total of 1162 strains were identified, belonging to 72 species affiliated to 40 genera with potentially 26 new species. The most prevalent phyla identified were Proteobacteria and Actinobacteria. Statistical analysis showed significant differences between atmospheric and lithospheric microbial communities, with distinct communities in Surtsey's air. By combining the air mass back trajectories and the analysis of the closest representative species of our isolates, we concluded that 85% of our isolates came from the surrounding environments and only 15% from long distances. The taxonomic proportions of the isolates were reflected by the site's nature and location.
RESUMO
Skaftárkatlar are two subglacial lakes located beneath the Vatnajökull ice cap in Iceland associated with geothermal and volcanic activity. Previous studies of these lakes with ribosomal gene (16S rDNA) tag sequencing revealed a limited diversity of bacteria adapted to cold, dark, and nutrient-poor waters. In this study, we present analyses of metagenomes from the lake which give new insights into its microbial ecology. Analyses of the 16S rDNA genes in the metagenomes confirmed the existence of a low-diversity core microbial assemblage in the lake and insights into the potential metabolisms of the dominant members. Seven taxonomic genera, Sulfuricurvum, Sulfurospirillum, Acetobacterium, Pelobacter/Geobacter, Saccharibacteria, Caldisericum, and an unclassified member of Prolixibacteraceae, comprised more than 98% of the rDNA reads in the library. Functional characterisation of the lake metagenomes revealed complete metabolic pathways for sulphur cycling, nitrogen metabolism, carbon fixation via the reverse Krebs cycle, and acetogenesis. These results show that chemolithoautotrophy constitutes the main metabolism in this subglacial ecosystem. This assemblage and its metabolisms are not reflected in enrichment cultures, demonstrating the importance of in situ investigations of this environment.
RESUMO
Phytoplankton play a crucial role in the marine food web and are sensitive indicators of environmental change. Iceland is at the center of a contrasting hydrography, with cold Arctic water coming in from the north and warmer Atlantic water from the south, making this geographical location very sensitive to climate change. We used DNA metabarcoding to determine the biogeography of phytoplankton in this area of accelerating change. Seawater samples were collected in spring (2012-2018), summer (2017) and winter (2018) together with corresponding physico-chemical metadata around Iceland. Amplicon sequencing of the V4 region of the 18S rRNA gene indicates that eukaryotic phytoplankton community composition is different between the northern and southern water masses, with some genera completely absent from Polar Water masses. Emiliania was more dominant in the Atlantic-influenced waters and in summer, and Phaeocystis was more dominant in the colder, northern waters and in winter. The Chlorophyta picophytoplankton genus, Micromonas, was similarly dominant to the dominant diatom genus, Chaetoceros. This study presents an extensive dataset which can be linked with other 18s rRNA datasets for further investigation into the diversity and biogeography of marine protists in the North Atlantic.
Assuntos
Clorófitas , Diatomáceas , Haptófitas , Fitoplâncton/genética , Islândia , Clorófitas/genética , Água do Mar , Diatomáceas/genética , Haptófitas/genética , Água , RNA Ribossômico 18S/genética , Estações do AnoRESUMO
The oceanic crust is the world's largest and least explored biosphere on Earth. The basaltic subsurface of Surtsey island in Iceland represents an analog of the warm and newly formed-oceanic crust and offers a great opportunity for discovering novel microorganisms. In this study, we collected borehole fluids, drill cores, and fumarole samples to evaluate the culturable bacterial diversity from the subsurface of the island. Enrichment cultures were performed using different conditions, media and temperatures. A total of 195 bacterial isolates were successfully cultivated, purified, and identified based on MALDI-TOF MS analysis and by 16S rRNA gene sequencing. Six different clades belonging to Firmicutes (40%), Gammaproteobacteria (28.7%), Actinobacteriota (22%), Bacteroidota (4.1%), Alphaproteobacteria (3%), and Deinococcota (2%) were identified. Bacillus (13.3%) was the major genus, followed by Geobacillus (12.33%), Enterobacter (9.23%), Pseudomonas (6.15%), and Halomonas (5.64%). More than 13% of the cultured strains potentially represent novel species based on partial 16S rRNA gene sequences. Phylogenetic analyses revealed that the isolated strains were closely related to species previously detected in soil, seawater, and hydrothermal active sites. The 16S rRNA gene sequences of the strains were aligned against Amplicon Sequence Variants (ASVs) from the previously published 16S rRNA gene amplicon sequence datasets obtained from the same samples. Compared with the culture-independent community composition, only 5 out of 49 phyla were cultivated. However, those five phyla accounted for more than 80% of the ASVs. Only 121 out of a total of 5642 distinct ASVs were culturable (≥98.65% sequence similarity), representing less than 2.15% of the ASVs detected in the amplicon dataset. Here, we support that the subsurface of Surtsey volcano hosts diverse and active microbial communities and that both culture-dependent and -independent methods are essential to improving our insight into such an extreme and complex volcanic environment.
RESUMO
Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, "Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)" is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the "Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups. Trial registration numbers: VSN-19-225 & NCT04330703.
Assuntos
Microbioma Gastrointestinal , Saúde Mental , Adolescente , Estudos de Casos e Controles , Criança , Microbioma Gastrointestinal/genética , Humanos , Refeições , Estudos Observacionais como Assunto , RNA Ribossômico 16S/genéticaRESUMO
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
RESUMO
Thermococcus barophilus is a hyperthermophilic, anaerobic, mixed heterotrophic, and carboxydotrophic euryarchaeon isolated from the deep sea hydrothermal vent Snakepit site on the mid-Atlantic ridge at a depth of 3,550 m. T. barophilus is the first true piezophilic, hyperthermophilic archaeon isolated, having an optimal growth at 40 MPa. Here we report the complete genome sequence of strain MP, the type strain of T. barophilus. The genome data reveal a close proximity with Thermococcus sibiricus, another Thermococcus isolated from the deep biosphere and a possible connection to life in the depths.
Assuntos
DNA Arqueal/química , DNA Arqueal/genética , Genoma Arqueal , Thermococcus/genética , Oceano Atlântico , Fontes Termais/microbiologia , Dados de Sequência Molecular , Filogenia , Água do Mar/microbiologia , Análise de Sequência de DNA , Thermococcus/isolamento & purificação , Thermococcus/fisiologiaRESUMO
Groundwater is a key resource for safe drinking water supply. Yet unconfined aquifers can be vulnerable to microbial contamination during extreme weather events that lead to surface runoff. The current study characterises the groundwater microbiome of a porous basaltic rock aquifer in South-West Iceland used for drinking water extraction and analyses the microbial community dynamics during surface runoff. The groundwater microbial community sampled from 12 wells across the extraction area contained over 745 prokaryotic genera and was phylogenetically similar between wells and most seasons, representing a diverse but homogenous ecosystem. The largest seasonal variation in the microbial community composition was detected during a period of concurrent snow melt and high precipitation leading to surface runoff. This period was characterised by an increased abundance of soil-associated taxa in the groundwater microbiome and specifically of taxa assigned to Aeromonas and Bacillus. A field experiment simulating high surface runoff around a groundwater well confirmed the increased abundance of surface soil microorganisms in the well water, indicating vulnerability of groundwater towards surface microbial intrusion during extreme weather events. As such events are likely to increase due to climate change, novel water management tools such as microbial community analysis could help ensure drinking water safety.
Assuntos
Água Subterrânea , Microbiota , Bactérias/genética , Islândia , Porosidade , Estações do Ano , Água , Abastecimento de ÁguaRESUMO
The island of Surtsey was formed in 1963-1967 on the offshore Icelandic volcanic rift zone. It offers a unique opportunity to study the subsurface biosphere in newly formed oceanic crust and an associated hydrothermal-seawater system, whose maximum temperature is currently above 120°C at about 100m below surface. Here, we present new insights into the diversity, distribution, and abundance of microorganisms in the subsurface of the island, 50years after its creation. Samples, including basaltic tuff drill cores and associated fluids acquired at successive depths as well as surface fumes from fumaroles, were collected during expedition 5059 of the International Continental Scientific Drilling Program specifically designed to collect microbiological samples. Results of this microbial survey are investigated with 16S rRNA gene amplicon sequencing and scanning electron microscopy. To distinguish endemic microbial taxa of subsurface rocks from potential contaminants present in the drilling fluid, we use both methodological and computational strategies. Our 16S rRNA gene analysis results expose diverse and distinct microbial communities in the drill cores and the borehole fluid samples, which harbor thermophiles in high abundance. Whereas some taxonomic lineages detected across these habitats remain uncharacterized (e.g., Acetothermiia, Ammonifexales), our results highlight potential residents of the subsurface that could be identified at lower taxonomic rank such as Thermaerobacter, BRH-c8a (Desulfallas-Sporotomaculum), Thioalkalimicrobium, and Sulfurospirillum. Microscopy images reveal possible biotic structures attached to the basaltic substrate. Finally, microbial colonization of the newly formed basaltic crust and the metabolic potential are discussed on the basis of the data.
RESUMO
Nine thermophilic strains of aerobic, non-sporulating, heterotrophic bacteria were isolated after enrichment of chimney material sampled from a deep-sea hydrothermal field at a depth of 2634m on the East-Pacific Rise (1â°N). The bacteria stained Gram-negative. They were rod-shaped and measured approximately 0.5µm in width and 1.5-3.5µm in length. They grew at 55-80°C, pH 6-8 and 1-6â% NaCl. Optimal growth was observed at 70-75°C, pH7.0 and 1-3â% NaCl. The organisms were identified as members of the genus Rhodothermus, having a 16S rRNA gene similarity of 98.1â% with Rhodothermus marinus DSM 4252(T). The novel isolates differed morphologically, physiologically and chemotaxonomically from R. marinus, e.g. in lack of pigmentation, response to hydrostatic pressure, maximum growth temperature and DNA G+C content. DNA-DNA hybridization revealed a reassociation value of 37.2â% between strain PRI 2902(T) and R. marinus DSM 4252(T), which strongly suggested that they represent different species. Furthermore, AFLP fingerprinting separated the novel strains from R. marinus reference strains. It is therefore concluded that the strains described here should be classified as representatives of a novel species for which the name Rhodothermus profundi sp. nov. is proposed; the type strain is PRI 2902(T) (=DSM 22212(T) =JCM 15944(T)).