Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 104(1): e3864, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062374

RESUMO

Following the near extinction of bison (Bison bison) from its historic range across North America in the late 19th century, novel bison conservation efforts in the early 20th century catalyzed a popular widespread conservation movement to protect and restore bison among other species and places. Since Allen's initial delineation (1876) of the historic distribution of North American bison, subsequent attempts have been hampered by knowledge gaps about bison distribution and abundance prior to and following colonial arrival and settlement. For the first time, we applied a multidisciplinary approach to assemble a comprehensive, integrated geographic database and meta-analysis of bison occurrence over the last 200,000 years, with particular emphasis on the 450 years before present. We combined paleontology, archaeology, and historical ecology data for our database, which totaled 6438 observations. We derived the observations from existing online databases, published literature, and first-hand exploration journal entries. To illustrate the conservative maximum historical extent of occurrence of bison, we created a concave hull using observations occurring over the last 450 years (n = 3379 observations), which is the broadly accepted historical benchmark at 1500 CE covering 59% of the North American continent. Although this distribution represents a historic extent of occurrence-merely delineating the maximum margins of the near-continental distribution-it does not replace a density-based approach reconstructing potential historical range distributions, which identifies core and marginal ranges. However, we envision the observations contained in this database will contribute to further research in the increasingly evidence-based disciplines of bison ecology, evolution, rewilding, management, and conservation. There are no copyright or proprietary restrictions on these data, and this data paper should be cited when the data are reused.


Assuntos
Bison , Animais , América do Norte , Ecologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36437837

RESUMO

Several quantitative diagnostic techniques are available to estimate gastrointestinal parasite counts in the feces of ruminants. Comparing egg and oocyst magnitudes in naturally infected samples has been a recommended approach to rank fecal techniques. In this study, we compared the Mini-FLOTAC (sensitivity of 5 eggs per gram (EPG)/oocysts per gram (OPG)) and different averaged replicates of the modified McMaster techniques (sensitivity of 33.33 EPG/OPG) in 387 fecal samples from 10 herds of naturally infected North American bison in the Central Great Plains region of the USA. Both techniques were performed with fecal slurries homogenized in a fill-FLOTAC device. In the study population, prevalence of strongyle eggs, Eimeria spp. oocysts, Moniezia spp. eggs and Trichuris spp. eggs was 81.4%, 73.9%, 7.5%, and 3.1%, respectively. Counts of strongyle eggs and Eimeria spp. oocysts obtained from 1 to 3 averaged technical replicates of the modified McMaster technique were compared to a single replicate of the Mini-FLOTAC. Correlation between the two techniques increased with an increase in the number of averaged technical replicates of the modified McMaster technique used to calculate EGP/OPG. The correlation for Moniezia spp. EPG when averaged triplicates of the modified McMaster technique were compared to a single replicate of the Mini-FLOTAC count was high; however, the correlation for Trichuris spp. eggs was low. Additionally, we used averaged counts from both techniques to show the overdispersion of parasites in bison herds.

3.
Ecol Evol ; 10(1): 336-349, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988731

RESUMO

Large grazers are visible and valuable indicators of the effects of projected changes in temperature and drought on grasslands. The grasslands of the Great Plains have supported the greatest number of bison (Bison bison; Linnaeus, 1758) since prehistoric times. We tested the hypothesis that body mass (BM, kg) and asymptotic body mass (ABM, kg) of Bison decline with rising temperature and increasing drought over both temporal and spatial scales along the Great Plains. Temporally, we modeled the relationship of annual measures of BM and height (H, m) of 5,781 Bison at Wind Cave National Park (WICA) from 1966 to 2015. We used Gompertz equations of BM against age to estimate ABM in decadal cohorts; both females and males decreased from the 1960s to the 2010s. Male ABM was variable but consistently larger (699 vs. 441 kg) than female ABM. We used local mean decadal temperature (MDT) and local mean decadal Palmer Drought Severity Index (dPDSI) to model the effects of climate on ABM. Drought decreased ABM temporally (-16 kg/local dPDSI) at WICA. Spatially, we used photogrammetry to measure body height (HE ) of 773 Bison to estimate BME in 19 herds from Saskatchewan to Texas, including WICA. Drought also decreased ABM spatially (-16 kg/local dPDSI) along the Great Plains. Temperature decreased ABM both temporally at WICA (-115 kg/°C local MDT) and spatially (-1 kg/°C local MDT) along the Great Plains. Our data indicate that temperature and drought drive Bison ABM presumably by affecting seasonal mass gain. Bison body size is likely to decline over the next five decades throughout the Great Plains due to projected increases in temperatures and both the frequency and intensity of drought.

4.
Ecol Evol ; 8(9): 4564-4574, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760897

RESUMO

The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24-18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short-term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA