Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 220803, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101374

RESUMO

Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling. We present a simple physical picture demonstrating the origin of this limitation, and further formalize these considerations in terms of concise higher-order decoupling rules. We then show how these limitations can be surpassed by identifying a novel sequence building block, in which the signal period matches twice the echo period. Using these decoupling rules and the resulting sequence building block, we experimentally demonstrate significant improvements in dynamical decoupling timescales and magnetic field sensitivity, opening the door for new applications in quantum sensing and quantum many-body physics.

2.
Phys Rev Lett ; 130(21): 210403, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295118

RESUMO

Understanding the microscopic mechanisms of thermalization in closed quantum systems is among the key challenges in modern quantum many-body physics. We demonstrate a method to probe local thermalization in a large-scale many-body system by exploiting its inherent disorder and use this to uncover the thermalization mechanisms in a three-dimensional, dipolar-interacting spin system with tunable interactions. Utilizing advanced Hamiltonian engineering techniques to explore a range of spin Hamiltonians, we observe a striking change in the characteristic shape and timescale of local correlation decay as we vary the engineered exchange anisotropy. We show that these observations originate from the system's intrinsic many-body dynamics and reveal the signatures of conservation laws within localized clusters of spins, which do not readily manifest using global probes. Our method provides an exquisite lens into the tunable nature of local thermalization dynamics and enables detailed studies of scrambling, thermalization, and hydrodynamics in strongly interacting quantum systems.


Assuntos
Hidrodinâmica , Física , Anisotropia
3.
Nature ; 538(7626): 491-494, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27706145

RESUMO

In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg's uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a 'single quadrature' measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary quantum foundations arise in such settings.

4.
Opt Express ; 20(22): 24778-90, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187243

RESUMO

In this work, we demonstrate an improved method for iterative phase retrieval with application to coherent diffractive imaging. By introducing additional operations inside the support term of existing iterated projection algorithms, we demonstrate improved convergence speed, higher success rate and, in some cases, improved reconstruction quality. New algorithms take a particularly simple form with the introduction of a generalized projection-based reflector. Numerical simulations verify that these new algorithms surpass the current standards without adding complexity to the reconstruction process. Thus the introduction of this new class of algorithms offers a new array of methods for efficiently deconvolving intricate data.

5.
Opt Express ; 20(17): 19050-9, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038545

RESUMO

We extend coherent diffraction imaging (CDI) to a high numerical aperture reflection mode geometry for the first time. We derive a coordinate transform that allows us to rewrite the recorded far-field scatter pattern from a tilted object as a uniformly spaced Fourier transform. Using this approach, FFTs in standard iterative phase retrieval algorithms can be used to significantly speed up the image reconstruction times. Moreover, we avoid the isolated sample requirement by imaging a pinhole onto the specimen, in a technique termed apertured illumination CDI. By combining the new coordinate transformation with apertured illumination CDI, we demonstrate rapid high numerical aperture imaging of samples illuminated by visible laser light. Finally, we demonstrate future promise for this technique by using high harmonic beams for high numerical aperture reflection mode imaging.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Iluminação/métodos , Microscopia Eletrônica de Transmissão/métodos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA