Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Biol ; 100(3): 793-810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35137410

RESUMO

Threadfins (Teleostei: Polynemidae) are a group of fishes named for their elongated and threadlike pectoral-fin rays. These fishes are commonly found in the world's tropical and subtropical waters, and are an economically important group for people living in these regions, with more than 100,000 t harvested in recent years. However, we do not have a detailed understanding of polynemid evolutionary history such that these fishes can be monitored, managed and conserved as an important tropical food source. Recent studies hypothesize at least one genus of threadfins is polyphyletic, and no studies have focused on generating a hypothesis of relationship for the Polynemidae using DNA sequences. In this study, we analyse a genomic dataset of ultraconserved-element and mitochondrial loci to construct a phylogeny of the Polynemidae. We recover the threadfins as a clade sister to flatfishes, with the most taxonomically rich genus, Polydactylus, being resolved as polyphyletic. When comparing our dataset to data from previous studies, we find that a few recent broad-scale phylogenies of fishes have incorporated mislabelled, misidentified or chimeric terminals into their analyses, impacting the relationships of threadfins they recover. We highlight these problematic sequences, providing revised identifications based on the data sequenced in this study. We then discuss the intrarelationships of threadfins, highlighting morphological or ecological characters that support the clades we recover.


Assuntos
Evolução Biológica , Linguados , Animais , Peixes , Linguados/genética , Genoma , Genômica , Humanos , Filogenia
2.
Mol Phylogenet Evol ; 121: 71-85, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305244

RESUMO

Massive parallel sequencing allows scientists to gather DNA sequences composed of millions of base pairs that can be combined into large datasets and analyzed to infer organismal relationships at a genome-wide scale in non-model organisms. Although the use of these large datasets is becoming more widespread, little to no work has been done in estimating phylogenetic relationships using UCEs in deep-sea fishes. Among deep-sea animals, the 257 species of lanternfishes (Myctophiformes) are among the most important open-ocean lineages, representing half of all mesopelagic vertebrate biomass. With this relative abundance, they are key members of the midwater food web where they feed on smaller invertebrates and fishes in addition to being a primary prey item for other open-ocean animals. Understanding the evolution and relationships of midwater organisms generally, and this dominant group of fishes in particular, is necessary for understanding and preserving the underexplored deep-sea ecosystem. Despite substantial congruence in the evolutionary relationships among deep-sea lanternfishes at higher classification levels in previous studies, the relationships among tribes, genera, and species within Myctophidae often conflict across phylogenetic studies or lack resolution and support. Herein we provide the first genome-scale phylogenetic analysis of lanternfishes, and we integrate these data from across the nuclear genome with additional protein-coding gene sequences and morphological data to further test evolutionary relationships among lanternfishes. Our phylogenetic hypotheses of relationships among lanternfishes are entirely congruent across a diversity of analyses that vary in methods, taxonomic sampling, and data analyzed. Within the Myctophiformes, the Neoscopelidae is inferred to be monophyletic and sister to a monophyletic Myctophidae. The current classification of lanternfishes is incongruent with our phylogenetic tree, so we recommend revisions that retain much of the traditional tribal structure and recognize five subfamilies instead of the traditional two subfamilies. The revised monophyletic taxonomy of myctophids includes the elevation of three former lampanyctine tribes to subfamilies. A restricted Lampanyctinae was recovered sister to Notolychninae. These two clades together were recovered as the sister group to the Gymnoscopelinae. Combined, these three subfamilies were recovered as the sister group to a clade composed of a monophyletic Diaphinae sister to the traditional Myctophinae. Our results corroborate recent multilocus molecular studies that infer a polyphyletic Myctophum in Myctophinae, and a para- or polyphyletic Lampanyctus and Nannobrachium within Lampanyctinae. We resurrect Dasyscopelus and Ctenoscopelus for the independent clades traditionally classified as species of Myctophum, and we place Nannobrachium into the synonymy of Lampanyctus.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Genômica , Filogenia , Animais , Sequência de Bases , Ecossistema , Peixes/genética , Funções Verossimilhança , Análise de Sequência de DNA
3.
PeerJ ; 12: e17075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495764

RESUMO

Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.


Assuntos
Peixes , Caracteres Sexuais , Animais , Feminino , Masculino , Peixes/anatomia & histologia , Ecossistema
4.
Integr Org Biol ; 4(1): obac044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381998

RESUMO

Extreme abiotic factors in deep-sea environments, such as near-freezing temperatures, low light, and high hydrostatic pressure, drive the evolution of adaptations that allow organisms to survive under these conditions. Pelagic and benthopelagic fishes that have invaded the deep sea face physiological challenges from increased compression of gasses at depth, which limits the use of gas cavities as a buoyancy aid. One adaptation observed in deep-sea fishes to increase buoyancy is a decrease of high-density tissues. In this study, we analyze mineralization of high-density skeletal tissue in rattails (family Macrouridae), a group of widespread benthopelagic fishes that occur from surface waters to greater than 7000 m depth. We test the hypothesis that rattail species decrease bone density with increasing habitat depth as an adaptation to maintaining buoyancy while living under high hydrostatic pressures. We performed micro-computed tomography (micro-CT) scans on 15 species and 20 specimens of rattails and included two standards of known hydroxyapatite concentration (phantoms) to approximate voxel brightness to bone density. Bone density was compared across four bones (eleventh vertebra, lower jaw, pelvic girdle, and first dorsal-fin pterygiophore). On average, the lower jaw was significantly denser than the other bones. We found no correlation between bone density and depth or between bone density and phylogenetic relationships. Instead, we observed that bone density increases with increasing specimen length within and between species. This study adds to the growing body of work that suggests bone density can increase with growth in fishes, and that bone density does not vary in a straightforward way with depth.

5.
J Morphol ; 281(4-5): 536-555, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239773

RESUMO

The evolution of heterodonty, the possession of varied tooth morphologies on the jaws of animals, has been relatively unexplored in ray-finned fishes compared to terrestrial vertebrates, and to an even lesser degree in deep-sea fish lineages. Lanternfishes (Myctophiformes) are an abundant and species-rich group endemic to deep-sea pelagic habitats. In this study, we document the presence of heterodonty on the oral jaws of lanternfishes, identifying differing anatomical and positional variations of dentition. We survey the anatomical variation in tooth morphology on the oral jaws of 114 lanternfish species across 37 genera and integrate our findings with a hypothesis of evolutionary relationships of lanternfishes to infer the number of times heterodonty evolved in this lineage. Our results indicate that heterodonty evolved at least six separate times on the oral jaws of lanternfishes, occurring as variable tooth morphologies in combination with villiform teeth. These combinations of tooth types include villiform plus hooked teeth, villiform plus hooked and recurved teeth, villiform plus spade, tricuspid, and hooked teeth, and villiform plus caniniform teeth. The reoccurring evolution of hooked teeth on the premaxilla and dentary in lanternfishes suggests heterodonty may serve an important functional role in their pelagic deep-sea environment. Hooked teeth could aid in securing and retaining prey in the oral cavity and allow for species to specialize on differing food resources, vital attributes for organisms living in open-ocean habitats.


Assuntos
Evolução Biológica , Dentição , Peixes/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Ecossistema , Funções Verossimilhança , Filogenia , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA