Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(1): 122-132.e9, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641505

RESUMO

A major determinant of mRNA half-life is the codon-dependent rate of translational elongation. How the processes of translational elongation and mRNA decay communicate is unclear. Here, we establish that the DEAD-box protein Dhh1p is a sensor of codon optimality that targets an mRNA for decay. First, we find mRNAs whose translation elongation rate is slowed by inclusion of non-optimal codons are specifically degraded in a Dhh1p-dependent manner. Biochemical experiments show Dhh1p is preferentially associated with mRNAs with suboptimal codon choice. We find these effects on mRNA decay are sensitive to the number of slow-moving ribosomes on an mRNA. Moreover, we find Dhh1p overexpression leads to the accumulation of ribosomes specifically on mRNAs (and even codons) of low codon optimality. Lastly, Dhh1p physically interacts with ribosomes in vivo. Together, these data argue that Dhh1p is a sensor for ribosome speed, targeting an mRNA for repression and subsequent decay.


Assuntos
Códon/metabolismo , RNA Helicases DEAD-box/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Códon/genética , RNA Helicases DEAD-box/genética , Meia-Vida
2.
Cell ; 160(6): 1111-24, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768907

RESUMO

mRNA degradation represents a critical regulated step in gene expression. Although the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, whereas the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exists as a mechanism to finely tune levels of mRNAs and, ultimately, proteins.


Assuntos
Códon , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Fúngico/química , RNA Mensageiro/química
3.
EMBO Rep ; 25(4): 1792-1813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383861

RESUMO

Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.


Assuntos
Ribonucleases , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Ribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Resposta a Proteínas não Dobradas , Morte Celular
4.
Cell ; 145(7): 1116-28, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703453

RESUMO

Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.


Assuntos
Membrana Celular/metabolismo , Proteínas Quinases/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Ciclo Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência
5.
Semin Cell Dev Biol ; 133: 83-95, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35148940

RESUMO

Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fusão Celular , Transdução de Sinais , Feromônios/metabolismo
6.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673994

RESUMO

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forminas , Proteínas dos Microfilamentos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148799

RESUMO

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticorpos de Domínio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Citocinese , Corantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos de Domínio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
8.
PLoS Biol ; 19(1): e3001067, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406066

RESUMO

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Assuntos
Ciclo Celular/fisiologia , Fator de Acasalamento/fisiologia , Meiose/fisiologia , Zigoto/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos/fisiologia , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Meiose/genética , Organismos Geneticamente Modificados , Ploidias , Proteínas de Ligação a RNA/fisiologia , Recombinação Genética/fisiologia , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
9.
J Inherit Metab Dis ; 47(2): 255-269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012812

RESUMO

Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.


Assuntos
Artrogripose , Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Recém-Nascido , Humanos , Feminino , Gravidez , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/patologia , Artrogripose/complicações , Artrogripose/patologia , Glicogênio , Músculo Esquelético/patologia , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Doença de Depósito de Glicogênio/complicações
10.
Nature ; 560(7718): 397-400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089908

RESUMO

The ploidy cycle, which is integral to sexual reproduction, requires meiosis to halve chromosome numbers as well as mechanisms that ensure zygotes are formed by exactly two partners1-4. During sexual reproduction of the fungal model organism Schizosaccharomyces pombe, haploid P and M cells fuse to form a diploid zygote that immediately enters meiosis5. Here we reveal that rapid post-fusion reconstitution of a bipartite transcription factor blocks re-fertilization. We first identify mutants that undergo transient cell fusion involving cytosol exchange but not karyogamy, and show that this drives distinct cell fates in the two gametes. The P partner undergoes lethal haploid meiosis, whereas the M cell persists in mating. The zygotic transcription that drives meiosis is rapidly initiated first from the P parental genome, even in wild-type cells. This asymmetric gene expression depends on a bipartite complex formed post-fusion between the cytosolic M-cell-specific peptide Mi and the nuclear P-cell-specific homeobox protein Pi6,7, which captures Mi in the P nucleus. Zygotic transcription is thus poised to initiate in the P nucleus as fast as Mi reaches it after fusion, a design that we reconstruct using two synthetic interactors localized to the nucleus and the cytosol of two respective partner cells. Notably, delaying zygotic transcription-by postponing Mi expression or deleting its transcriptional target in the P genome-leads to zygotes fusing with additional gametes, thus forming polyploids and eventually aneuploid progeny. The signalling cascade to block re-fertilization shares components with, but bifurcates from, meiotic induction8-10. Thus, a cytoplasmic connection upon gamete fusion leads to asymmetric reconstitution of a bipartite transcription factor to rapidly block re-fertilization and induce meiosis, ensuring genome maintenance during sexual reproduction.


Assuntos
Fusão Celular , Meiose/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Aneuploidia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Diploide , Regulação Fúngica da Expressão Gênica , Haploidia , Poliploidia , Reprodução/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Transcrição Gênica
11.
BMC Public Health ; 24(1): 325, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287286

RESUMO

BACKGROUND: We aimed to study the source of infection for recently SARS-CoV-2-infected individuals from October 2020 to August 2022 in France. METHODS: Participants from the nationwide ComCor case-control study who reported recent SARS-CoV-2 infection were asked to document the source and circumstances of their infection through an online questionnaire. Multivariable logistic regression was used to identify the factors associated with not identifying any source of infection. RESULTS: Among 584,846 adults with a recent SARS-CoV-2 infection in France, 46.9% identified the source of infection and an additional 22.6% suspected an event during which they might have become infected. Known and suspected sources of infection were household members (30.8%), extended family (15.6%), work colleagues (15.0%), friends (11.0%), and possibly multiple/other sources (27.6%). When the source of infection was known, was not a household member, and involved a unique contact (n = 69,788), characteristics associated with transmission events were indoors settings (91.6%), prolonged (> 15 min) encounters (50.5%), symptomatic source case (64.9%), and neither the source of infection nor the participant wearing a mask (82.2%). Male gender, older age, lower education, living alone, using public transportation, attending places of public recreation (bars, restaurants, nightclubs), public gatherings, and cultural events, and practicing indoor sports were all independently associated with not knowing the source of infection. CONCLUSION: Two-thirds of infections were attributed to interactions with close relatives, friends, or work colleagues. Extra-household indoor encounters without masks were commonly reported and represented avoidable circumstances of infection. TRIAL REGISTRATION: ClinicalTrials.gov registration number: NCT04607941.


Assuntos
COVID-19 , Adulto , Humanos , Masculino , COVID-19/epidemiologia , SARS-CoV-2 , Estudos de Casos e Controles , Características da Família , França/epidemiologia
12.
Genes Dev ; 30(19): 2226-2239, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798845

RESUMO

Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone-GPCR (G-protein-coupled receptor)-MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell-cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Feromônios/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Comunicação Autócrina/fisiologia , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo
13.
Development ; 147(11)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32376679

RESUMO

The VAPYRIN (VPY) gene in Medicago truncatula and Petunia hybrida is required for arbuscular mycorrhizal (AM) symbiosis. The moss Physcomitrella patens has a close homolog (VPY-like, VPYL), although it does not form AM. Here, we explore the phylogeny of VPY and VPYL in land plants, and study the expression and developmental function of VPYL in Ppatens We show that VPYL is expressed primarily in the protonema, the early filamentous stage of moss development, and later in rhizoids arising from the leafy gametophores and in adult phyllids. Knockout mutants have specific phenotypes in branching of the protonema and in cell division of the leaves (phyllids) in gametophores. The mutants are responsive to auxin and strigolactone, which are involved in regulation of protonemal branching, indicating that hormonal signaling in the mutants is not affected in hormonal signaling. Taken together, these results suggest that VPYL exerts negative regulation of protonemal branching and cell division in phyllids. We discuss VPY and VPYL phylogeny and function in land plants in the context of AM symbiosis in angiosperms and development in the moss.


Assuntos
Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Bryopsida/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Mutagênese , Fenótipo , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
14.
Int J Obes (Lond) ; 47(3): 224-235, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36725979

RESUMO

BACKGROUND/OBJECTIVE: As the obesity epidemic continues, the understanding of macronutrient influence on central nervous system function is critical for understanding diet-induced obesity and potential therapeutics, particularly in light of the increased sugar content in processed foods. Previous research showed mixed effects of sucrose feeding on body weight gain but has yet to reveal insight into the impact of sucrose on hypothalamic functioning. Here, we explore the impact of liquid sucrose feeding for 12 weeks on body weight, body composition, caloric intake, and hypothalamic AgRP neuronal function and synaptic plasticity. METHODS: Patch-clamp electrophysiology of hypothalamic AgRP neurons, metabolic phenotyping and food intake were performed on C57BL/6J mice. RESULTS: While mice given sugar-sweetened water do not gain significant weight, they do show subtle differences in body composition and caloric intake. When given sugar-sweetened water, mice show similar alterations to AgRP neuronal excitability as in high-fat diet obese models. Increased sugar consumption also primes mice for increased caloric intake and weight gain when given access to a HFD. CONCLUSIONS: Our results show that elevated sucrose consumption increased activity of AgRP neurons and altered synaptic excitability. This may contribute to obesity in mice and humans with access to more palatable (HFD) diets.


Assuntos
Obesidade , Sacarose , Humanos , Camundongos , Animais , Sacarose/farmacologia , Sacarose/metabolismo , Proteína Relacionada com Agouti/metabolismo , Camundongos Endogâmicos C57BL , Aumento de Peso , Dieta Hiperlipídica , Neurônios/metabolismo , Água/metabolismo , Água/farmacologia , Peso Corporal
15.
BMC Cancer ; 23(1): 1209, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066522

RESUMO

BACKGROUND: Immune checkpoint inhibitors of programmed cell death protein 1 (PD-1) represent a significant breakthrough in treating head and neck squamous cell carcinoma (HNSCC), with long-lasting responses and prolonged survival observed in first- and second-line therapy. However, this is observed in < 20% of patients and high primary/secondary resistance may occur. The primary objective of the identification of predictive factors for the response to anti-PD-1 immunotherapy in head and neck squamous cell carcinoma (IPRICE) study is to identify predictive factors of response to anti-PD-1 immunotherapy. METHODS: The IPRICE study is a single-center, prospective, non-randomized, open-label, and interventional clinical trial. Liquid and tumor biopsies will be performed in 54 patients with recurrent/metastatic (R/M) HNSCC undergoing anti-PD-1 immunotherapy alone to compare the evolution of gene expression and immunological profile between responders and non-responders. We will use a multidisciplinary approach including spatial transcriptomics, single seq-RNA analysis, clinical data, and medical images. Genes, pathways, and transcription factors potentially involved in the immune response will also be analyzed, including genes involved in the interferon-gamma (IFN-γ) pathway, immunogenic cell death and mitophagy, hypoxia, circulating miRNA-mediated immunomodulation, cytokines, and immune repertoire within the tumor microenvironment (TME). With a follow-up period of 3-years, these data will help generate effective biomarkers to define optimal therapeutic strategy and new immunomodulatory agents based on a better understanding of primary/secondary resistance mechanisms. Tumor biopsy will be performed initially before the start of immunotherapy at the first tumor assessment and is only proposed at tumor progression. Clinical data will be collected using a dedicated Case Report Form (CRF). DISCUSSION: Identifying predictive factors of the response to anti-PD-1 immunotherapy and optimizing long-term immune response require a thorough understanding of the intrinsic and acquired resistance to immunotherapy. To achieve this, dynamic profiling of TME during anti-PD-1 immunotherapy based on analysis of tumor biopsy samples is critical. This will be accomplished through the anatomical localization of HNSCC, which will allow for the analysis of multiple biopsies during treatment and the emergence of breakthrough technologies including single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics. TRIAL REGISTRATION: Clinicaltrial.gov. Registered April 14, 2022, https://www. CLINICALTRIALS: gov/study/NCT05328024 .


Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia/métodos , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico
16.
PLoS Biol ; 18(1): e3000600, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978045

RESUMO

Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.


Assuntos
Matriz Nuclear/fisiologia , Schizosaccharomyces , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas ras/fisiologia , Polaridade Celular/genética , Retroalimentação Fisiológica/fisiologia , Optogenética , Organismos Geneticamente Modificados , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
17.
Mol Cell ; 59(5): 716-7, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26340422

RESUMO

In an age of next-generation sequencing, the ability to purify RNA transcripts has become a critical issue. In this issue, Duffy et al. (2015) improve on a pre-existing technique of RNA labeling and purification by 4-thiouridine tagging. By increasing the efficiency of RNA capture, this method will enhance the ability to study RNA dynamics, especially for transcripts normally inefficiently captured by previous methods.


Assuntos
MicroRNAs/química , Humanos
18.
BMC Public Health ; 23(1): 1240, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365557

RESUMO

PURPOSE: Our objective was to describe circumstances of SARS-CoV-2 household transmission and to identify factors associated with a lower risk of transmission in a nationwide case-control study in France. METHODS: In a descriptive analysis, we analysed cases reporting transmission from someone in the household (source case). Index cases could invite a non-infected household member to participate as a related control. In such situations, we compared the exposures of the index case and related control to the source case by conditional logistic regression matched for household, restricted to households in which the source case was a child, and the index case and related control were the infected child's parents. RESULTS: From October 27, 2020 to May 16, 2022, we included 104 373 cases for the descriptive analysis with a documented infection from another household member. The source case was mostly the index case's child (46.9%) or partner (45.7%). In total, 1026 index cases invited a related control to participate in the study. In the case-control analysis, we included 611 parental pairs of cases and controls exposed to the same infected child. COVID-19 vaccination with 3 + doses versus no vaccination (OR 0.1, 95%CI: 0.04-0.4), isolation from the source case (OR 0.6, 95%CI: 0.4-0.97) and the ventilation of indoor areas (OR 0.6, 95%CI: 0.4-0.9) were associated with lower risk of infection. CONCLUSION: Household transmission was common during the SARS-CoV-2 pandemic in France. Mitigation strategies, including isolation and ventilation, decreased the risk of secondary transmission within the household. TRIAL REGISTRATION: ClinicalTrials.gov registration number: NCT04607941.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Vacinas contra COVID-19 , Pais
19.
Alzheimers Dement ; 19(5): 2135-2149, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36735865

RESUMO

INTRODUCTION: Machine learning research into automated dementia diagnosis is becoming increasingly popular but so far has had limited clinical impact. A key challenge is building robust and generalizable models that generate decisions that can be reliably explained. Some models are designed to be inherently "interpretable," whereas post hoc "explainability" methods can be used for other models. METHODS: Here we sought to summarize the state-of-the-art of interpretable machine learning for dementia. RESULTS: We identified 92 studies using PubMed, Web of Science, and Scopus. Studies demonstrate promising classification performance but vary in their validation procedures and reporting standards and rely heavily on popular data sets. DISCUSSION: Future work should incorporate clinicians to validate explanation methods and make conclusive inferences about dementia-related disease pathology. Critically analyzing model explanations also requires an understanding of the interpretability methods itself. Patient-specific explanations are also required to demonstrate the benefit of interpretable machine learning in clinical practice.


Assuntos
Demência , Aprendizado de Máquina , Humanos , Projetos de Pesquisa , Demência/diagnóstico
20.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298093

RESUMO

Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA