Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894520

RESUMO

The influence of the reaction medium on the surface structure and properties of a Ni-based catalyst used for the reductive transformations of O-, N-, and S-containing aromatic substrates under hydrogen transfer conditions has been studied. The catalysts were characterized by XRD, XPS, and IR spectroscopy and TEM methods before and after the reductive reaction. It has been shown that the conversion of 1-benzothiophene causes irreversible poisoning of the catalyst surface with the formation of the Ni2S3 phase, whereas the conversion of naphthalene, 1-benzofuran, and indole does not cause any phase change of the catalyst at 250 °C. However, after the indole conversion, the catalyst surface remains enriched with N-containing compounds, which are evenly distributed over the surface.

2.
Phys Chem Chem Phys ; 23(4): 2723-2730, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492314

RESUMO

Investigating the size distributions of Co nanoparticle ensembles is an important problem, which has no straightforward solution. In this work, we use the combination of 59Co internal field nuclear magnetic resonance (59Co IF NMR) and ferromagnetic resonance (FMR) spectroscopies on a metallic Co nanoparticle sample with a narrow Co nanoparticle size distribution due to encapsulation within the inner channels of carbon nanotubes. High-resolution transmission electron microscopy (TEM) images showed that the nanoparticles can be represented as prolate spheroids, with the majority of particles having an aspect ratio between 1 and 2. This observation has increased the accuracy of superparamagnetic blocking size calculations from Néel relaxation model by introducing the actual volume of the ellipsoids taken from the image processing. 59Co IF NMR and FMR experiments conducted under different temperatures allowed us to observe the thermal blocking of superparamagnetic particles in full accordance with the TEM particle volume distribution. This proved that these magnetic resonance techniques can be used jointly for characterization of Co nanoparticles in the bulk of the sample.

3.
Appl Spectrosc ; 78(3): 277-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115792

RESUMO

The wax appearance temperature (WAT), being one of the key characteristics of waxy crude oil and other waxy substances, is used for the necessary assessment of the phase stability of materials during various technological processes. However, the determination of this parameter as well as peculiarities of wax formation under high gas pressure suffers from the lack of suitable techniques for this task. To address this issue, an attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) method has been applied for the first time to measure the WAT of waxy crude oil under high gas pressure. Carbon dioxide (CO2), nitrogen, and natural gas were used in the study due to their widespread applicability as injection gases in enhanced oil recovery methods. The S2/S1 versus temperature method based on changes in the band of rocking vibrations of the CH2 group was applied to determine WAT. It was found that the ATR FT-IR method based on the proposed dependence S2/S1 versus temperature gives lower WAT values compared to those observed by viscometry, magnetic resonance imaging inspection, and cross-polarized microscopy methods for the waxy crude oil studied. A detailed analysis was carried out using variable-temperature ATR FT-IR spectra of waxy crude oil in the temperature region near the WAT. Essentially different dynamics of wax crystal formation in waxy oil sample and model paraffin solution were demonstrated during the cooling process. The results obtained by high-pressure ATR FT-IR showed that CO2 and natural gas reduce the WAT, while nitrogen has virtually no effect. In addition, for the studied oil, it was found that high pressure of CO2 and natural gases leads to a visual decrease in the amount of wax crystals precipitated, but not to the complete disappearance of microcrystals at a certain temperature and pressure. The results obtained proved that ATR FT-IR can be an effective method for proper determinations of WAT under high-pressure conditions similar to those met in practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA