Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636739

RESUMO

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Ciclídeos/imunologia , Administração Oral , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Lactococcus lactis/genética , Lactococcus lactis/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
2.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056788

RESUMO

Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed ß-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.


Assuntos
Quitosana/química , Quitosana/uso terapêutico , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Humanos
3.
BMC Cancer ; 21(1): 625, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044804

RESUMO

BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood. METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR. RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/ß-catenin and KRAS signalling pathways were upregulated while the TGF-ß signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV. CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.


Assuntos
Vírus da Doença de Newcastle/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Neoplasias da Bexiga Urinária/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/imunologia , Bexiga Urinária/imunologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/imunologia , beta Catenina/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071389

RESUMO

Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.


Assuntos
Ácido Clorogênico/química , Sistemas de Liberação de Medicamentos/métodos , Grafite/química , Hidroxibenzoatos/química , Nanocompostos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/farmacocinética , Liberação Controlada de Fármacos , Grafite/administração & dosagem , Grafite/farmacocinética , Células Hep G2 , Humanos , Hidroxibenzoatos/administração & dosagem , Hidroxibenzoatos/farmacocinética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanocompostos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
5.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652694

RESUMO

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcuma/química , Curcumina/análogos & derivados , Curcumina/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526880

RESUMO

Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.


Assuntos
Monoterpenos Acíclicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Lipídeos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanoestruturas/química , Monoterpenos Acíclicos/química , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Biotechnol ; 19(1): 82, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775775

RESUMO

BACKGROUND: Site-specific integration system allows foreign DNA to be integrated into the specific site of the host genome, enabling stable expression of heterologous protein. In this study, integrative vectors for secretion and surface display of proteins were constructed based on a lactococcal phage TP901-1 integrating system. RESULTS: The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA. CONCLUSION: The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.


Assuntos
Bacteriófagos/fisiologia , Lactococcus lactis/genética , Lactococcus lactis/virologia , Recombinação Genética , Sítios de Ligação Microbiológicos , Bacteriófagos/genética , Engenharia Genética , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Genoma Bacteriano , Lactococcus lactis/metabolismo , Sinais Direcionadores de Proteínas/genética , Integração Viral
8.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547100

RESUMO

Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 µM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.


Assuntos
Carcinoma de Células Renais , Quitosana , Ácido Clorogênico , Sistemas de Liberação de Medicamentos , Sequestradores de Radicais Livres , Neoplasias Renais , Nanopartículas , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Ácido Clorogênico/química , Ácido Clorogênico/farmacocinética , Ácido Clorogênico/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/uso terapêutico
9.
Molecules ; 24(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319614

RESUMO

Kefir is a homemade, natural fermented product comprised of a probiotic bacteria and yeast complex. Kefir consumption has been associated with many advantageous properties to general health, including as an antioxidative, anti-obesity, anti-inflammatory, anti-microbial, and anti-tumor moiety. This beverage is commonly found and consumed by people in the United States of America, China, France, Brazil, and Japan. Recently, the consumption of kefir has been popularized in other countries including Malaysia. The microflora in kefir from different countries differs due to variations in culture conditions and the starter media. Thus, this study was aimed at isolating and characterizing the lactic acid bacteria that are predominant in Malaysian kefir grains via macroscopic examination and 16S ribosomal RNA gene sequencing. The results revealed that the Malaysian kefir grains are dominated by three different strains of Lactobacillus strains, which are Lactobacillus harbinensis, Lactobacillusparacasei, and Lactobacillus plantarum. The probiotic properties of these strains, such as acid and bile salt tolerances, adherence ability to the intestinal mucosa, antibiotic resistance, and hemolytic test, were subsequently conducted and extensively studied. The isolated Lactobacillus spp. from kefir H maintained its survival rate within 3 h of incubation at pH 3 and pH 4 at 98.0 ± 3.3% and 96.1 ± 1.7% of bacteria growth and exhibited the highest survival at bile salt condition at 0.3% and 0.5%. The same isolate also showed high adherence ability to intestinal cells at 96.3 ± 0.01%, has antibiotic resistance towards ampicillin, penicillin, and tetracycline, and showed no hemolytic activity. In addition, the results of antioxidant activity tests demonstrated that isolated Lactobacillus spp. from kefir G possessed high antioxidant activities for total phenolic content (TPC), total flavonoid content (TFC), ferric reducing ability of plasma (FRAP), and 1,1-diphenyl-2-picryl-hydrazine (DPPH) assay compared to other isolates. From these data, all Lactobacillus spp. isolated from Malaysian kefir serve as promising candidates for probiotics foods and beverage since they exhibit potential probiotic properties and antioxidant activities.


Assuntos
Antioxidantes/química , Kefir/microbiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus/isolamento & purificação , Humanos , Lactobacillus/química , Lactobacillus/crescimento & desenvolvimento , Lactobacillus plantarum/química , Lactobacillus plantarum/crescimento & desenvolvimento , Malásia , Probióticos/química , Probióticos/isolamento & purificação
10.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641445

RESUMO

Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-one (DK1), was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI) dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays) were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR) and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G0/G1phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA fragmentation and depolarization of the mitochondrial membrane. qRT-PCR results show significant upregulation in the expression of caspase-9 in both HT29 and SW620 cell lines, further supporting that cell death induction by DK1 is via an intrinsic pathway. These outcomes, therefore, demonstrate DK1 as a potential anticancer agent for colon adenocarcinoma due to its anti-apoptotic attributes.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Curcumina/síntese química , Curcumina/química , Células HT29 , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
11.
Molecules ; 23(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495251

RESUMO

We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Gadolínio/química , Ouro/química , Grafite/química , Hidroxibenzoatos/administração & dosagem , Nanopartículas Metálicas/química , Óxidos/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Hidroxibenzoatos/química , Cinética , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/ultraestrutura , Camundongos , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
12.
Molecules ; 23(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303982

RESUMO

Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.


Assuntos
Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos
13.
Microb Cell Fact ; 16(1): 175, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020992

RESUMO

BACKGROUND: Iron based ferromagnetic nanoparticles (IONP) have found a wide range of application in microelectronics, chemotherapeutic cell targeting, and as contrast enhancers in MRI. As such, the design of well-defined monodisperse IONPs is crucial to ensure effectiveness in these applications. Although these nanostructures are currently manufactured using chemical and physical processes, these methods are not environmentally conducive and weigh heavily on energy and outlays. Certain microorganisms have the innate ability to reduce metallic ions in aqueous solution and generate nano-sized IONP's with narrow size distribution. Harnessing this potential is a way forward in constructing microbial nanofactories, capable of churning out high yields of well-defined IONP's with physico-chemical characteristics on par with the synthetically produced ones. RESULTS: In this work, we report the molecular characterization of an actinomycetes, isolated from tropical freshwater wetlands sediments, that demonstrated rapid aerobic extracellular reduction of ferric ions to generate iron based nanoparticles. Characterization of these nanoparticles was carried out using Field Emission Scanning Electron Microscope with energy dispersive X-ray spectroscopy (FESEM-EDX), Field Emission Transmission Electron Microscope (FETEM), Ultraviolet-Visible (UV-Vis) Spectrophotometer, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). This process was carried out at room temperature and humidity and under aerobic conditions and could be developed as an environmental friendly, cost effective bioprocess for the production of IONP's. CONCLUSION: While it is undeniable that iron reducing microorganisms confer a largely untapped resource as potent nanofactories, these bioprocesses are largely anaerobic and hampered by the low reaction rates, highly stringent microbial cultural conditions and polydispersed nanostructures. In this work, the novel isolate demonstrated rapid, aerobic reduction of ferric ions in its extracellular matrix, resulting in IONPs of relatively narrow size distribution which are easily extracted and purified without the need for convoluted procedures. It is therefore hoped that this isolate could be potentially developed as an effective nanofactory in the future.


Assuntos
Ferro/química , Imãs/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Áreas Alagadas , Actinobacteria/metabolismo , Difusão Dinâmica da Luz , Água Doce/microbiologia , Prata , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
BMC Vet Res ; 13(1): 186, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629460

RESUMO

BACKGROUND: Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. An attenuated derivative of P. multocida B:2 GDH7, was previously constructed through mutation of the gdhA gene and proved to be an effective live attenuated vaccine for HS. Currently, only two potential live attenuated vaccine candidates for HS are being reported; P. multocida B:2 GDH7 and P. multocida B:2 JRMT12. This study primarily aims to investigate the potential of P. multocida B:2 GDH7 strain as a delivery vehicle for DNA vaccine for future multivalent applications. RESULTS: An investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM). CONCLUSIONS: The ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.


Assuntos
Vacinas Bacterianas , Doenças dos Bovinos/prevenção & controle , Endotélio Vascular/microbiologia , Septicemia Hemorrágica/veterinária , Pasteurella multocida/fisiologia , Animais , Aorta/citologia , Aorta/microbiologia , Aderência Bacteriana , Vacinas Bacterianas/genética , Vacinas Bacterianas/toxicidade , Bovinos , Doenças dos Bovinos/microbiologia , Células Cultivadas , Septicemia Hemorrágica/prevenção & controle , Pasteurella multocida/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/toxicidade , Vacinas de DNA/toxicidade
15.
Int J Mol Sci ; 15(11): 20254-65, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25380526

RESUMO

Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.


Assuntos
Hidróxidos/química , Metais/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Adsorção , Catálise , Nanotubos de Carbono/ultraestrutura , Porosidade , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Difração de Raios X
16.
Heliyon ; 10(9): e30761, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765081

RESUMO

Andrographolide is a plant-based compound that showed promising activity against lung cancer. However, the compound's poor water solubility and low bioavailability limit its oral administration. Inhaled drug delivery of andrographolide is highly favourable as it delivers active ingredients directly into the affected lungs. In the current study, we compared in vitro aerosol performance, anti-cancer activity and storages stability of two (2) inhalable andrographolide formulations. Formulation 1 was prepared using precipitation and spray drying techniques, while Formulation 2 was prepared via direct spray drying technique. Drug morphology and physicochemical properties were confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. In vitro aerosol dispersion profile was evaluated using the next-generation impactor (NGI). Formulation 1 consisted of elongated crystals while Formulation 2 was made up of amorphous spherical particles. Both formulations had an inhalable fraction (<5 µm) of more than 40 %, making them suitable for pulmonary drug delivery. The formulations also showed an IC25 of less than 100 µg/mL against the human lung carcinoma cells (A549). Formulation 1 and 2 was stable in a vacuum condition at 30 °C for up to 6 and 3 months, respectively. Novel inhalable andrographolide dry powders were successfully produced with a good aerosol profile, potent anti-cancer activity and adequate storage stability, which deserve further in vivo investigations.

17.
Sci Rep ; 13(1): 12180, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500670

RESUMO

Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited. The development of nanodelivery platform, namely Sorafenib-loaded chitosan nanoparticles (SF-CS NPs), was constructed in order to improve SF drug delivery to human Hepatocellular Carcinoma (HepG2) cell lines. The NPs were artificially fabricated using an ionic gelation technique. A number of CS NPs that had been loaded with an SF were prepared using different concentrations of sodium tripolyphosphate (TPP). These concentrations were 2.5, 5, 10, and 20 mg/mL, and they are abbreviated as SF-CS NPs 2.5, SF-CS NPs 5.0, SF-CS NPs 10, and SF-CS NPs 20 respectively. DLS, FTIR, XRD, HRTEM, TGA, and FESEM with EDX and TEM were used for the physiochemical characterisation of SF-CS NPs. Both DLS and HRTEM techniques demonstrated that smaller particles were produced when the TPP content was raised. In a PBS solution with a pH of 4.5, the SF exhibited efficient release from the nanoparticles, demonstrating that the delivery mechanism is effective for tumour cells. The cytotoxicity investigation showed that their anticancer effect against HepG2 cell lines was significantly superior than that of free SF. In addition, the nanodrug demonstrated an absence of any detectable toxicity to normal adult human dermal fibroblast (HDFa) cell lines. This is a step towards developing a more effective anticancer medication delivery system with sustained-release characteristics, which will ultimately improve the way cancer is managed.


Assuntos
Carcinoma Hepatocelular , Quitosana , Neoplasias Hepáticas , Nanopartículas , Humanos , Quitosana/química , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química
18.
RSC Adv ; 13(40): 27965-27983, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736560

RESUMO

Less effective antioxidant supplementation in combating free radicals is often related to the lack of the formulation of carriers. The antioxidant may be one of the most powerful substances but is marred by poor uptake by cells when the carrier degraded and dissolved too rapidly. Nanoparticle (NP) systems are promising in overcoming the problem since they provide high surface area to enhance encapsulation and release efficiency. With the right selection of material, NP carriers could function as constructive antioxidant cargos. Generally, NPs carry only one active ingredient; this study, however, utilized chitosan nanoparticles (CNPs) and hydrophobically modified palmitoyl-chitosan nanoparticles (PCNPs) that were dual encapsulated with antioxidants of different polarities, namely, hydrophobic thymoquinone (TQ) and hydrophilic l-ascorbic acid (LAA) to evaluate their combination effects in scavenging free radicals. The antioxidants followed zero-order release kinetics with a controlled release manner for about 48 h. The interaction effects between TQ and LAA loaded in the NP systems were determined by classical isobologram (CI) values. The CI values were derived by a diphenyl picrylhydrazyl (DPPH) assay, a radical scavenging activity assay. Combined TQ and LAA had CI values of less than one, with a lower value in the PCNP system than in the CNP system. This indicates that the interaction between those antioxidants showed higher synergistic effects in PCNPs, which enhanced the DPPH radical scavenging activities. The antioxidative potential of compound(s) encapsulated in the PCNP carrier was further experimented by a reactive oxygen species (ROS) assay on a human normal lung fibroblast cell line (MRC-5) as lung is one of the organs with high accumulation of free radicals. About 48 h post treatment, the dual-loaded TQ and LAA in PCNPs showed the lowest ROS level in comparison to single-loaded antioxidants and bare antioxidant delivery. The hydrogen peroxide (H2O2) radical scavenging was influenced by both the controlled release property of the PCNP system and the synergy between TQ and LAA. In short, dual-loaded TQ and LAA in the hydrophobically modified PCNP had effectively depicted the capability of a single CS-based nanocarrier to hold more than one compound at a time to function as a potent radical scavenger.

19.
Aerosp Med Hum Perform ; 94(6): 485-487, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194178

RESUMO

INTRODUCTION: An episode of prolonged exposure to high altitude can cause hypoxia and have significant health consequences. In people with a high-altitude disorder, the body reacts by producing a protein called hypoxia-inducible factor (HIF), which triggers a series of physiological changes and serves a central role in the hypoxia response. Its activity is regulated by the oxygen-dependent degradation of the HIF-1α protein (HIF-1A gene). Therefore, the effects of low oxygen tension in high altitude were explored using fluorescent sensors of hypoxia.METHODS: The development of the sensor provided more sensitivity for detecting hypoxia by generating a calibration of optimized parameters such as reagent concentrations, reagent volumes, and device dimensions.RESULTS: There is a high sensitivity and specificity in detecting the changes of HIF-1α protein hypoxia using the feasibility hypoxia test. This would enable point-of-care (POC) testing and individual self-administration, resulting in faster and more accurate results that can be used for a robust diagnostic approach and enhanced health surveillance, particularly in high-altitude exposure.Shaharuddin S, Rahman NMANA, Masarudin MJ, Alamassi MN, Saad FFA. HIF-1 sensor in detecting hypoxia tolerance at high altitude. Aerosp Med Hum Perform. 2023; 94(6):485-487.


Assuntos
Altitude , Fator 1 Induzível por Hipóxia , Humanos , Hipóxia/diagnóstico , Hipóxia/metabolismo , Oxigênio
20.
Artigo em Inglês | MEDLINE | ID: mdl-37755545

RESUMO

The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA