Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(2): 021603, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085729

RESUMO

We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline electromagnetic field. The data collected at the external lines of the CERN Super Proton Synchrotron were critically compared to Monte Carlo simulations based on the Baier-Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of 5 in the case of beam alignment with the [001] crystal axes. The observed effect opens the way to the realization of compact electromagnetic calorimeters or detectors based on oriented scintillator crystals in which the amount of material can be strongly reduced with respect to the state of the art. These devices could have relevant applications in fixed-target experiments, as well as in satellite-borne γ telescopes.

2.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29459412

RESUMO

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

3.
Phys Rev Lett ; 105(24): 243401, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231524

RESUMO

We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

4.
Emerg Med J ; 25(7): 403-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18573948

RESUMO

BACKGROUND AND AIMS: Thrombolytic therapy with intravenous recombinant tissue plasminogen activator (rt-PA) improves outcome in patients with ischaemic stroke treated within 3 h of symptom onset, but its extended implementation is limited. A pilot study was designed to verify whether evaluation of patients with acute ischaemic stroke and their treatment with intravenous rt-PA in the emergency department (ED), followed by transportation to a semi-intensive stroke care unit, offers a safe and effective organisational solution to provide intravenous thrombolysis to acute stroke patients when a stroke unit (SU) is not available. METHODS: After checking for inclusion and exclusion criteria, ED doctors contacted the stroke team with a single page, located family members and urgently obtained computed tomography scan and laboratory tests. A stroke team investigator clinically assessed the patient, obtained written informed consent and supervised intravenous rt-PA in the ED. After treatment, the patient was transferred to the SU for rehabilitation and treatment of complications, under supervision of the same stroke team investigator. RESULTS: 52 patients were treated with intravenous rt-PA within 3 h of symptom onset. 20 patients (38%) improved neurologically after 24 h, the number increased to 30 (58%) after one week. At 3 months 22 patients had a favourable outcome (43%). The 3-month mortality rate was 12%. Symptomatic cerebral haemorrhage was observed in two patients (4%). CONCLUSIONS: Intravenous rt-PA administration in the ED is an effective organisational solution for acute ischaemic stroke when an SU is not established.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/administração & dosagem , Idoso , Isquemia Encefálica/diagnóstico , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/etiologia , Cuidados Críticos , Serviço Hospitalar de Emergência , Feminino , Humanos , Infusões Intravenosas , Imageamento por Ressonância Magnética , Masculino , Acidente Vascular Cerebral/diagnóstico , Tomografia Computadorizada por Raios X , Resultado do Tratamento
5.
Nat Commun ; 5: 3089, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24448273

RESUMO

Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart-hydrogen--is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA