Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 489(7415): 257-62, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22940863

RESUMO

The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by long-lived slow-cycling stem cells that give rise to transit-amplifying cell progeny, whereas the other suggests that homeostasis is achieved by a single committed progenitor population that balances stochastic fate. Here we probe the cellular heterogeneity within the IFE using two different inducible Cre recombinase­oestrogen receptor constructs targeting IFE progenitors in mice. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments arranged in a hierarchy involving slow-cycling stem cells and committed progenitor cells. After wounding, only stem cells contribute substantially to the repair and long-term regeneration of the tissue, whereas committed progenitor cells make a limited contribution.


Assuntos
Células Epidérmicas , Células-Tronco/citologia , Animais , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Sobrevivência Celular , Células Clonais/citologia , Células Clonais/metabolismo , Integrases/genética , Integrases/metabolismo , Queratina-14/genética , Camundongos , Regiões Promotoras Genéticas/genética , Precursores de Proteínas/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Células-Tronco/metabolismo , Cauda/citologia , Cicatrização/fisiologia
2.
Nature ; 478(7369): 399-403, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012397

RESUMO

Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.


Assuntos
Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Neuropilina-1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/citologia , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos , Células-Tronco Neoplásicas , Neuropilina-1/genética , Fator A de Crescimento do Endotélio Vascular/genética
3.
Nat Commun ; 8: 14684, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248284

RESUMO

Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders.


Assuntos
Movimento Celular , Epiderme/patologia , Células-Tronco/citologia , Cicatrização , Animais , Polaridade Celular , Proliferação de Células , Forma Celular , Células Clonais , Folículo Piloso/patologia , Camundongos , Modelos Biológicos , Células-Tronco/metabolismo
4.
Nat Cell Biol ; 12(6): 572-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473297

RESUMO

Adult stem cells (SCs) are at high risk of accumulating deleterious mutations because they reside and self-renew in adult tissues for extended periods. Little is known about how adult SCs sense and respond to DNA damage within their natural niche. Here, using mouse epidermis as a model, we define the functional consequences and the molecular mechanisms by which adult SCs respond to DNA damage. We show that multipotent hair-follicle-bulge SCs have two important mechanisms for increasing their resistance to DNA-damage-induced cell death: higher expression of the anti-apoptotic gene Bcl-2 and transient stabilization of p53 after DNA damage in bulge SCs. The attenuated p53 activation is the consequence of a faster DNA repair activity, mediated by a higher non-homologous end joining (NHEJ) activity, induced by the key protein DNA-PK. Because NHEJ is an error-prone mechanism, this novel characteristic of adult SCs may have important implications in cancer development and ageing.


Assuntos
Reparo do DNA , Folículo Piloso/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco/metabolismo , Adulto , Envelhecimento , Animais , Fenômenos Bioquímicos , Morte Celular , DNA/metabolismo , Dano ao DNA , Epiderme/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos SCID , Células-Tronco Multipotentes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
J Cell Biol ; 187(1): 91-100, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19786578

RESUMO

Merkel cells (MCs) are located in the touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Whether MCs originate from embryonic epidermal or neural crest progenitors has been a matter of intense controversy since their discovery >130 yr ago. In addition, how MCs are maintained during adulthood is currently unknown. In this study, using lineage-tracing experiments, we show that MCs arise through the differentiation of epidermal progenitors during embryonic development. In adults, MCs undergo slow turnover and are replaced by cells originating from epidermal stem cells, not through the proliferation of differentiated MCs. Conditional deletion of the Atoh1/Math1 transcription factor in epidermal progenitors results in the absence of MCs in all body locations, including the whisker region. Our study demonstrates that MCs arise from the epidermis by an Atoh1-dependent mechanism and opens new avenues for study of MC functions in sensory perception, neuroendocrine signaling, and MC carcinoma.


Assuntos
Células Epidérmicas , Homeostase , Células de Merkel/citologia , Células de Merkel/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Linhagem da Célula , Epiderme/metabolismo , Epiderme/ultraestrutura , Técnica Direta de Fluorescência para Anticorpo , Imuno-Histoquímica , Integrases/genética , Integrases/metabolismo , Células de Merkel/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/embriologia , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Pele/citologia , Pele/embriologia , Pele/metabolismo , Pele/ultraestrutura , Células-Tronco/citologia , Fatores de Tempo , Vibrissas/citologia , Vibrissas/embriologia , Vibrissas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA