Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(6): 164, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231269

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4ß2 and α3ß4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.


Assuntos
Receptores Nicotínicos , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica , Acetilcolina/farmacologia , Receptores Nicotínicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(51): 25968-25973, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776253

RESUMO

Evidence shows that the neurotransmitter dopamine mediates the rewarding effects of nicotine and other drugs of abuse, while nondopaminergic neural substrates mediate the negative motivational effects. ß2* nicotinic acetylcholine receptors (nAChR) are necessary and sufficient for the experience of both nicotine reward and aversion in an intra-VTA (ventral tegmental area) self-administration paradigm. We selectively reexpressed ß2* nAChRs in VTA dopamine or VTA γ-amino-butyric acid (GABA) neurons in ß2-/- mice to double-dissociate the aversive and rewarding conditioned responses to nicotine in nondependent mice, revealing that ß2* nAChRs on VTA dopamine neurons mediate nicotine's conditioned aversive effects, while ß2* nAChRs on VTA GABA neurons mediate the conditioned rewarding effects in place-conditioning paradigms. These results stand in contrast to a purely dopaminergic reward theory, leading to a better understanding of the neurobiology of nicotine motivation and possibly to improved therapeutic treatments for smoking cessation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Dopamina/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Agonistas de Dopamina , Flupentixol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação/efeitos dos fármacos , Recompensa
3.
J Neurosci ; 40(17): 3465-3477, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32184221

RESUMO

Nicotine addiction, through smoking, is the principal cause of preventable mortality worldwide. Human genome-wide association studies have linked polymorphisms in the CHRNA5-CHRNA3-CHRNB4 gene cluster, coding for the α5, α3, and ß4 nicotinic acetylcholine receptor (nAChR) subunits, to nicotine addiction. ß4*nAChRs have been implicated in nicotine withdrawal, aversion, and reinforcement. Here we show that ß4*nAChRs also are involved in non-nicotine-mediated responses that may predispose to addiction-related behaviors. ß4 knock-out (KO) male mice show increased novelty-induced locomotor activity, lower baseline anxiety, and motivational deficits in operant conditioning for palatable food rewards and in reward-based Go/No-go tasks. To further explore reward deficits we used intracranial self-administration (ICSA) by directly injecting nicotine into the ventral tegmental area (VTA) in mice. We found that, at low nicotine doses, ß4KO self-administer less than wild-type (WT) mice. Conversely, at high nicotine doses, this was reversed and ß4KO self-administered more than WT mice, whereas ß4-overexpressing mice avoided nicotine injections. Viral expression of ß4 subunits in medial habenula (MHb), interpeduncular nucleus (IPN), and VTA of ß4KO mice revealed dose- and region-dependent differences: ß4*nAChRs in the VTA potentiated nicotine-mediated rewarding effects at all doses, whereas ß4*nAChRs in the MHb-IPN pathway, limited VTA-ICSA at high nicotine doses. Together, our findings indicate that the lack of functional ß4*nAChRs result in deficits in reward sensitivity including increased ICSA at high doses of nicotine that is restored by re-expression of ß4*nAChRs in the MHb-IPN. These data indicate that ß4 is a critical modulator of reward-related behaviors.SIGNIFICANCE STATEMENT Human genetic studies have provided strong evidence for a relationship between variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and nicotine addiction. Yet, little is known about the role of ß4 nicotinic acetylcholine receptor (nAChR) subunit encoded by this cluster. We investigated the implication of ß4*nAChRs in anxiety-, food reward- and nicotine reward-related behaviors. Deletion of the ß4 subunit gene resulted in an addiction-related phenotype characterized by low anxiety, high novelty-induced response, lack of sensitivity to palatable food rewards and increased intracranial nicotine self-administration at high doses. Lentiviral vector-induced re-expression of the ß4 subunit into either the MHb or IPN restored a "stop" signal on nicotine self-administration. These results suggest that ß4*nAChRs provide a promising novel drug target for smoking cessation.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Nicotina/administração & dosagem , Receptores Nicotínicos/metabolismo , Recompensa , Autocontrole , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Motivação/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Agonistas Nicotínicos/administração & dosagem , Receptores Nicotínicos/genética , Autoadministração
4.
Dev Biol ; 461(1): 86-95, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982375

RESUMO

One of the main obstacles for studying the molecular and cellular mechanisms underlying human neurodevelopment in vivo is the scarcity of experimental models. The discovery that neurons can be generated from human induced pluripotent stem cells (hiPSCs) paves the way for novel approaches that are stem cell-based. Here, we developed a technique to follow the development of transplanted hiPSC-derived neuronal precursors in the cortex of mice over time. Using post-mortem immunohistochemistry we quantified the differentiation and maturation of dendritic patterns of the human neurons over a total of six months. In addition, entirely hiPSC-derived neuronal parenchyma was followed over eight months using two-photon in vivo imaging through a cranial window. We found that transplanted hiPSC-derived neuronal precursors exhibit a "protracted" human developmental programme in different cortical areas. This offers novel possibilities for the sequential in vivo study of human cortical development and its alteration, followed in "real time".


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Córtex Motor/embriologia , Neurogênese/fisiologia , Células Piramidais/transplante , Animais , Encéfalo/embriologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Córtex Motor/citologia , Células Piramidais/citologia , Transplante Heterólogo
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206324

RESUMO

The gene cluster region, CHRNA3/CHRNA5/CHRNB4, encoding for nicotinic acetylcholine receptor (nAChR) subunits, contains several genetic variants linked to nicotine addiction and brain disorders. The CHRNA5 single-nucleotide polymorphism (SNP) rs16969968 is strongly associated with nicotine dependence and lung diseases. Using immunostaining studies on tissue sections and air-liquid interface airway epithelial cell cultures, in situ hybridisation, transcriptomic and cytokines detection, we analysed rs16969968 contribution to respiratory airway epithelial remodelling and modulation of inflammation. We provide cellular and molecular analyses which support the genetic association of this polymorphism with impaired ciliogenesis and the altered production of inflammatory mediators. This suggests its role in lung disease development.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Inflamação , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Mucosa Respiratória/metabolismo , Células Cultivadas , Cromossomos Humanos Par 15 , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pneumopatias/genética , Pneumopatias/metabolismo , Família Multigênica , Proteínas do Tecido Nervoso/fisiologia , Receptores Nicotínicos/fisiologia , Mucosa Respiratória/fisiopatologia , Tabagismo/genética , Tabagismo/metabolismo
6.
J Neurochem ; 154(3): 241-250, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32078158

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are major signalling molecules in the central and peripheral nervous system. Over the last decade, they have been linked to a number of major human psychiatric and neurological conditions, like smoking, schizophrenia, Alzheimer's disease and many others. Human Genome-Wide Association Studies (GWAS) have robustly identified genetic alterations at a locus of chromosome 15q to several of these diseases. In this review, we discuss a major coding polymorphism in the alpha5 subunit, referred to as α5SNP, and its functional dissection in vitro and in vivo. Its presence at high frequency in many human populations lends itself to pharmaceutical intervention in the context of 'positive allosteric modulators' (PAMs). We will present the prospects of this novel treatment, and the remaining challenges to identify suitable molecules.


Assuntos
Receptores Nicotínicos/genética , Animais , Humanos , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050277

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.


Assuntos
Pulmão/metabolismo , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Adulto , Fatores Etários , Ciclo Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Detecção de Sinal Psicológico , Fumar , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 113(51): 14823-14828, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911815

RESUMO

The prefrontal cortex (PFC) plays an important role in cognitive processes, including access to consciousness. The PFC receives significant cholinergic innervation and nicotinic acetylcholine receptors (nAChRs) contribute greatly to the effects of acetylcholine signaling. Using in vivo two-photon imaging of both awake and anesthetized mice, we recorded spontaneous, ongoing neuronal activity in layer II/III in the PFC of WT mice and mice deleted for different nAChR subunits. As in humans, this activity is characterized by synchronous ultraslow fluctuations and neuronal synchronicity is disrupted by light general anesthesia. Both the α7 and ß2 nAChR subunits play an important role in the generation of ultraslow fluctuations that occur to a different extent during quiet wakefulness and light general anesthesia. The ß2 subunit is specifically required for synchronized activity patterns. Furthermore, chronic application of mecamylamine, an antagonist of nAChRs, disrupts the generation of ultraslow fluctuations. Our findings provide new insight into the ongoing spontaneous activity in the awake and anesthetized state, and the role of cholinergic neurotransmission in the orchestration of cognitive functions.


Assuntos
Estado de Consciência/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Anestesia Geral , Animais , Deleção de Genes , Isoflurano/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Fenótipo , Polimorfismo Genético , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos
9.
FASEB J ; 31(2): 828-839, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27856558

RESUMO

Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores Nicotínicos/metabolismo , Encéfalo/citologia , Linhagem Celular , Humanos , Polimorfismo Genético , Receptores Nicotínicos/genética
10.
FASEB J ; 29(8): 3389-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911614

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit modulate nicotine consumption, and the human CHRNA5 rs16969968 polymorphism, causing the replacement of the aspartic acid residue at position 398 with an asparagine (α5DN), has recently been associated with increased use of tobacco and higher incidence of lung cancer. We show that in ventral midbrain neurons, the α5 subunit is essential for heteromeric nAChR-induced intracellular-free Ca(2+) concentration elevations and that in α5(-/-) mice, a class of large-amplitude nicotine-evoked currents is lost. Furthermore, the expression of the α5DN subunit is not able to restore nicotinic responses, indicating a loss of function by this subunit in native neurons. To understand how α5DN impairs heteromeric nAChR functions, we coexpressed α4, α5, or α5DN subunits with a dimeric concatemer (ß2α4) in a heterologous system, to obtain nAChRs with fixed stoichiometry. Both α5(ß2α4)2 and α5DN(ß2α4)2 nAChRs yielded similar levels of functional expression and Ca(2+) permeability, measured as fractional Ca(2+) currents (8.2 ± 0.7% and 8.0 ± 1.9%, respectively), 2-fold higher than α4(ß2α4)2. Our results indicate that the loss of function of nicotinic responses observed in α5DN-expressing ventral midbrain neurons is neither due to an intrinsic inability of this subunit to form functional nAChRs nor to an altered Ca(2+) permeability but likely to intracellular modulation.


Assuntos
Cálcio/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(10): 4099-104, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431157

RESUMO

Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.


Assuntos
Nicotina/toxicidade , Receptores Nicotínicos/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiopatologia , Animais , Bungarotoxinas/toxicidade , Cálcio/metabolismo , Células Cultivadas , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Nicotina/metabolismo , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7
12.
Exp Dermatol ; 24(6): 443-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25807898

RESUMO

EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with ß1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of ß1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in ß1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of ß1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with ß1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased ß1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway.


Assuntos
Basigina/fisiologia , Adesão Celular/fisiologia , Integrina beta1/fisiologia , Melanoma/patologia , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Cutâneas/patologia , Animais , Basigina/efeitos dos fármacos , Basigina/genética , Linhagem Celular Tumoral , Forma Celular/fisiologia , Matriz Extracelular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Técnicas In Vitro , Melanoma/fisiopatologia , Camundongos , Camundongos Nus , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/fisiopatologia
13.
Mol Pharmacol ; 86(3): 306-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002271

RESUMO

We examined α7ß2-nicotinic acetylcholine receptor (α7ß2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7-nAChRs and α7ß2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7ß2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using ß2 subunit-specific Abs. Ab specificity was confirmed in control studies using subunit-null mutant mice or cell lines heterologously expressing specific human nAChR subtypes and subunits. Functional expression in Xenopus oocytes of concatenated pentameric (α7)5-, (α7)4(ß2)1-, and (α7)3(ß2)2-nAChRs was confirmed using two-electrode voltage clamp recording of responses to nicotinic ligands. Importantly, pharmacological profiles were indistinguishable for concatenated (α7)5-nAChRs or for homomeric α7-nAChRs constituted from unlinked α7 subunits. Pharmacological profiles were similar for (α7)5-, (α7)4(ß2)1-, and (α7)3(ß2)2-nAChRs except for diminished efficacy of nicotine (normalized to acetylcholine efficacy) at α7ß2- versus α7-nAChRs. This study represents the first direct confirmation of α7ß2-nAChR expression in human and mouse forebrain, supporting previous mouse studies that suggested relevance of α7ß2-nAChRs in Alzheimer disease etiopathogenesis. These data also indicate that α7ß2-nAChR subunit isoforms with different α7/ß2 subunit ratios have similar pharmacological profiles to each other and to α7 homopentameric nAChRs. This supports the hypothesis that α7ß2-nAChR agonist activation predominantly or entirely reflects binding to α7/α7 subunit interface sites.


Assuntos
Prosencéfalo/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Cerebelo/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Oócitos/metabolismo , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Piridinas/farmacologia , Ensaio Radioligante , Receptores Nicotínicos/genética , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/genética
14.
Mol Genet Metab ; 112(1): 64-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685552

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and ß2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7ß2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7ß2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7ß2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7ß2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central ß2nAChR deficiency.


Assuntos
Tecido Adiposo/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Índice Glicêmico , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores Nicotínicos/genética
15.
Proc Natl Acad Sci U S A ; 108(18): 7577-82, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502501

RESUMO

Nicotine is the primary psychoactive component of tobacco. Its reinforcing and addictive properties depend on nicotinic acetylcholine receptors (nAChRs) located within the mesolimbic axis originating in the ventral tegmental area (VTA). The roles and oligomeric assembly of subunit α4- and subunit α6-containing nAChRs in dopaminergic (DAergic) neurons are much debated. Using subunit-specific knockout mice and targeted lentiviral re-expression, we have determined the subunit dependence of intracranial nicotine self-administration (ICSA) into the VTA and the effects of nicotine on dopamine (DA) neuron excitability in the VTA and on DA transmission in the nucleus accumbens (NAc). We show that the α4 subunit, but not the α6 subunit, is necessary for ICSA and nicotine-induced bursting of VTA DAergic neurons, whereas subunits α4 and α6 together regulate the activity dependence of DA transmission in the NAc. These data suggest that α4-dominated enhancement of burst firing in DA neurons, relayed by DA transmission in NAc that is gated by nAChRs containing α4 and α6 subunits, underlies nicotine self-administration and its long-term maintenance.


Assuntos
Neurônios/metabolismo , Nicotina/metabolismo , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/metabolismo , Análise de Variância , Animais , Autorradiografia , Dopamina/metabolismo , Eletrofisiologia , Vetores Genéticos/genética , Lentivirus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/farmacologia , Receptores Nicotínicos/genética
16.
Transl Psychiatry ; 14(1): 146, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485715

RESUMO

There is growing evidence that autoantibodies (AAbs) against proteins expressed in the brain are playing an important role in neurological and psychiatric disorders. Here, we explore the presence and the role of peripheral AAbs to the α7-nicotinic acetylcholine receptor (nAChR) in inflammatory subgroups of psychiatric patients with bipolar disorder (BD) or schizophrenia (SCZ) and healthy controls. We have identified a continuum of AAb levels in serum when employing a novel ELISA technique, with a significant elevation in patients compared to controls. Using unsupervised two-step clustering to stratify all the subjects according to their immuno-inflammatory background, we delineate one subgroup consisting solely of psychiatric patients with severe symptoms, high inflammatory profile, and significantly increased levels of anti-nAChR AAbs. In this context, we have used monoclonal mouse anti-human α7-nAChR antibodies (α7-nAChR-mAbs) and shown that TNF-α release was enhanced upon LPS stimulation in macrophages pre-incubated with α7-nAChR-mAbs compared to the use of an isotype control. These findings provide a basis for further study of circulating nicotinic AAbs, and the inflammatory profile observed in patients with major mood and psychotic disorders.


Assuntos
Transtorno Bipolar , Receptores Nicotínicos , Esquizofrenia , Humanos , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7 , Inflamação/metabolismo , Autoanticorpos
17.
J Neurosci ; 32(7): 2352-6, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396410

RESUMO

Polymorphisms in the gene for the α5 nicotinic acetylcholine receptor (nAChR) subunit are associated with vulnerability to nicotine addiction. However, the underlying normal functions of α5-containing nAChRs in the brain are poorly understood. Striatal dopamine (DA) transmission is critical to the acquisition and maintenance of drug addiction and is modulated strongly by nicotine acting at heteromeric ß2-containing (ß2*) nAChRs. We explored whether α5 subunits, as well as α4, α6, and ß3 subunits, participate in the powerful regulation of DA release probability by ß2* nAChRs in nucleus accumbens (NAc) core and in dorsal striatum [caudatoputamen (CPu)]. We detected evoked dopamine release using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal slices from mice with deletions of α4, α5, α6, or ß3 subunits. We show that the nAChR subtypes that dominantly regulate dopamine transmission depend critically upon α5 subunits in the dorsal CPu in α4α5(non-α6)ß2-nAChRs but not in NAc core, where α4α6ß2ß3-nAChRs are required. These data reveal the distinct populations of nAChRs that govern DA transmission in NAc core versus dorsal CPu. Furthermore, they indicate that α5 subunits are critical to the regulation of DA transmission by α4ß2* nAChRs in regions of striatum associated with habitual and instrumental responses (dorsal CPu) rather than pavlovian associations (NAc).


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Núcleo Caudado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Habituação Psicofisiológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/metabolismo , Putamen/metabolismo
18.
Mol Pharmacol ; 83(6): 1176-89, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543412

RESUMO

Although long-term exposure to nicotine is highly addictive, one beneficial consequence of chronic tobacco use is a reduced risk for Parkinson's disease. Of interest, these effects both reflect structural and functional plasticity of brain circuits controlling reward and motor behavior and, specifically, recruitment of nicotinic acetylcholine receptors (nAChR) in mesencephalic dopaminergic neurons. Because the underlying cellular mechanisms are poorly understood, we addressed this issue with use of primary cultures of mouse mesencephalic dopaminergic neurons. Exposure to nicotine (1-10 µM) for 72 hours in vitro increased dendritic arborization and soma size in primary cultures. These effects were blocked by mecamylamine and dihydro-ß-erythroidine, but not methyllycaconitine. The involvement of α4ß2 nAChR was supported by the lack of nicotine-induced structural remodeling in neurons from α4 null mutant mice (KO). Challenge with nicotine triggered phosphorylation of the extracellular signal-regulated kinase (ERK) and the thymoma viral proto-oncogene (Akt), followed by activation of the mammalian target of rapamycin complex 1 (mTORC1)-dependent p70 ribosomal S6 protein kinase. Upstream pathway blockade using the phosphatidylinositol 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride] resulted in suppression of nicotine-induced phosphorylations and structural plasticity. These effects were dependent on functional DA D3 receptor (D3R), because nicotine was inactive both in cultures from D3R KO mice and after pharmacologic blockade with D3R antagonist trans-N-4-2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethylcyclohexyl-4-quinolinecarboxamide (SB-277011-A) (50 nM). Finally, exposure to nicotine in utero (5 mg/kg/day for 5 days) resulted in increased soma area of DAergic neurons of newborn mice, effects not observed in D3 receptor null mutant mice mice. These findings indicate that nicotine-induced structural plasticity at mesencephalic dopaminergic neurons involves α4ß2 nAChRs together with dopamine D3R-mediated recruitment of ERK/Akt-mTORC1 signaling.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Nicotina/farmacologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática , Feminino , Sistema de Sinalização das MAP Quinases , Exposição Materna , Troca Materno-Fetal , Alvo Mecanístico do Complexo 1 de Rapamicina , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Gravidez , Receptores de Dopamina D3/genética , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
19.
Cereb Cortex ; 22(5): 1007-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21810785

RESUMO

Organization of locomotor behavior is altered in mice knockout for the ß2 subunit of the nicotinic receptor-ß2-/- mice-during novelty exploration. We investigated the neuronal basis of this alteration by measuring activation of the immediate early gene c-fos in the brains of wild-type (WT) and ß2-/- mice after exploration of a novel or a familiar environment. Results show 1) no constitutive difference between WT and ß2-/- mice in c-fos gene expression in any brain region, 2) novelty exploration triggered activation of the hippocampus and the reward circuit while exploration of a familiar environment produced increased activation in the amygdala, and 3) in ß2-/- mice, exploration of novelty, but not familiarity, induced an increase in activation in the prelimbic prefrontal cortex (PFC) compared with WT mice. c-Fos immunoreactivity after different stages of learning in a maze increased similarly in the prelimbic area of both WT and ß2-/- mice, while their performance differed. In WT mice, exploration of a novel environment triggered an increase in c-Fos expression in the reward circuit and the hippocampus, while in ß2-/- mice, the amygdala and the motor cortex were additionally activated. We also highlight the role of nicotinic receptors during activation of the PFC, specifically during free exploration of a novel environment.


Assuntos
Comportamento Exploratório/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Perfilação da Expressão Gênica , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptores Nicotínicos/deficiência , Recompensa
20.
Front Neurosci ; 17: 1097857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113156

RESUMO

Introduction: Loss of cholinergic neurons as well as α4ß2* (* = containing) nicotinic acetylcholine receptors (nAChRs) is a prominent feature of Alzheimer's disease (AD). Specifically, amyloid ß (Aß), the principal pathogenic factor of AD, is a high affinity ligand for nAChRs. Yet, the pathophysiological role of nAChRs in AD is not well established. Methods: In the present study, we have investigated the effects of the loss of α4* nAChRs on the histological alterations of the Tg2576 mouse model of AD (APPswe) crossing hemizygous APPswe mice with mice carrying the genetic inactivation of α4 nAChR subunit (α4KO). Results: A global decrease in Aß plaque load was observed in the forebrain of APPswe/α4KO mice in comparison with APPswe mice, that was particularly marked in neocortex of 15 month-old mice. At the same age, several alterations in synaptophysin immunoreactivity were observed in cortico-hippocampal regions of APPswe mice that were partially counteracted by α4KO. The analysis of the immunoreactivity of specific astroglia (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule, Iba1) markers showed an increase in the number as well as in the area occupied by these cells in APPswe mice that were partially counteracted by α4KO. Conclusion: Overall, the present histological study points to a detrimental role of α4* nAChRs that may be specific for Aß-related neuropathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA