Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 59(1): 5-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571292

RESUMO

The activation of oncogenic mitogen-activated protein kinase cascade via mutations in BRAF is often observed in human melanomas. Targeted inhibitors of BRAF (BRAFi), alone or as a part of a combination therapy, offer a significant benefit to such patients. Unfortunately, some cases are initially nonresponsive to these drugs, while others become refractory in the course of treatment, underscoring the need to understand and mitigate the underlying resistance mechanisms. We report that interference with polo-like kinase 3 (PLK3) reduces the tolerance of BRAF-mutant melanoma cells to BRAFi, while increased PLK3 expression has the opposite effect. Accordingly, PLK3 expression correlates with tolerance to BRAFi in a panel of BRAF-mutant cell lines and is elevated in a subset of recurring BRAFi-resistant melanomas. In PLK3-expressing cells, R406, a kinase inhibitor whose targets include PLK3, recapitulates the sensitizing effects of genetic PLK3 inhibitors. The findings support a role for PLK3 as a predictor of BRAFi efficacy and suggest suppression of PLK3 as a way to improve the efficacy of targeted therapy.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Vemurafenib/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Camundongos SCID , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Supressoras de Tumor , Vemurafenib/uso terapêutico
2.
Cells ; 12(19)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830586

RESUMO

Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Quinases Ativadas por p21/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Biomedicines ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672738

RESUMO

The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA