Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Biotechnol J ; 18(5): 1185-1199, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31646753

RESUMO

Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE ß-CYCLASE (LCYb) resulted in increased ß-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased ß-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of ß-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.


Assuntos
Solanum lycopersicum , Ácido Abscísico , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno
2.
J Exp Bot ; 71(22): 7103-7117, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32856699

RESUMO

To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.


Assuntos
Fragaria , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo
3.
J Exp Bot ; 68(19): 5261-5269, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666381

RESUMO

The transition from an aquatic ancestral condition to a terrestrial environment exposed the first land plants to the desiccating effects of air and potentially large fluctuations in temperature and light intensity. To be successful, this transition necessitated metabolic, physiological, and morphological modifications, among which one of the most important was the capacity to synthesize hydrophobic extracellular biopolymers such as those found in the cuticular membrane, suberin, lignin, and sporopollenin, which collectively reduce the loss of water, provide barriers to pathogens, protect against harmful levels of UV radiation, and rigidify targeted cell walls. Here, we review phylogenetic and molecular data from extant members of the green plant clade (Chlorobionta) and show that the capacity to synthesize the monomeric precursors of all four biopolymers is ancestral and extends in some cases to unicellular plants (e.g. Chlamydomonas). We also review evidence from extant algae, bryophytes, and early-divergent tracheophytes and show that gene duplication, subsequent neo-functionalization, and the co-option of fundamental and ancestral metabolic pathways contributed to the early evolutionary success of the land plants.


Assuntos
Biopolímeros/análise , Parede Celular/química , Evolução Molecular , Viridiplantae/química , Biopolímeros/biossíntese , Carotenoides/análise , Carotenoides/biossíntese , Interações Hidrofóbicas e Hidrofílicas , Lignina/análise , Lignina/biossíntese , Lipídeos/análise , Lipídeos/biossíntese , Lipídeos de Membrana/análise , Lipídeos de Membrana/biossíntese , Filogenia
4.
Biomacromolecules ; 17(1): 215-24, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26652188

RESUMO

Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.


Assuntos
Biopolímeros/metabolismo , Frutas/metabolismo , Lipídeos de Membrana/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Solanum lycopersicum/genética , Parede Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Lipídeos de Membrana/genética , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Ceras/metabolismo
5.
Plant Cell ; 23(11): 3893-910, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22045915

RESUMO

Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.


Assuntos
Frutas/citologia , Frutas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Parede Celular/metabolismo , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/genética , Metabolismo Energético/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Microdissecção e Captura a Laser/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Especificidade de Órgãos , Epiderme Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nat Chem Biol ; 8(7): 609-11, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22610035

RESUMO

A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.


Assuntos
Ligases/química , Lipídeos de Membrana/biossíntese , Plantas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ligases/metabolismo , Dados de Sequência Molecular , Plantas/enzimologia
7.
Plant Physiol Biochem ; 206: 108294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159547

RESUMO

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.


Assuntos
Fragaria , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
8.
New Phytol ; 197(2): 468-480, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23205954

RESUMO

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Assuntos
Padronização Corporal , Frutas/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Padronização Corporal/genética , Colletotrichum/fisiologia , Regulação para Baixo/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Epiderme Vegetal/genética , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Polimerização , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Ceras/metabolismo
9.
Hortic Res ; 10(3): uhad011, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960432

RESUMO

Firmness is one of the most important fruit quality traits in strawberries. The postharvest shelf life of this soft fruit is highly limited by the loss of firmness, where cell wall disassembly plays an important role. Previous studies demonstrated that the polygalacturonase FaPG1 has a key role in remodelling pectins during strawberry softening. In this study, FaPG1 knockout strawberry plants have been generated using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Ten independent lines, cv. "Chandler", were obtained, and all of them were successfully edited as determined by PCR amplification and T7 endonuclease assay. The targeted mutagenesis insertion and deletion rates were analyzed using targeted deep sequencing. The percentage of edited sequences varied from 47% up to almost 100%, being higher than 95% for seven of the selected lines. Phenotypic analyses showed that 7 out of the eight lines analyzed produced fruits significantly firmer than the control, ranging from 33 to 70% increase in firmness. There was a positive relationship between the degree of FaPG1 editing and the rise in fruit firmness. Minor changes were observed in other fruit quality traits, such as colour, soluble solids, titratable acidity or anthocyanin content. Edited fruits showed a reduced softening rate during postharvest, displayed a reduced transpirational water loss, and were less damaged by Botrytis cinerea inoculation. The analysis of four potential off-target sites revealed no mutation events. In conclusion, editing the FaPG1 gene using the CRISPR/Cas9 system is an efficient method for improving strawberry fruit firmness and shelf life.

10.
Plant J ; 60(2): 378-85, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19563439

RESUMO

Full appreciation of the roles of the plant cuticle in numerous aspects of physiology and development requires a comprehensive understanding of its biosynthesis and deposition; however, much is still not known about cuticle structure, trafficking and assembly. To date, assessment of cuticle organization has been dominated by 2D imaging, using histochemical stains in conjunction with light and fluorescence microscopy. This strategy, while providing valuable information, has limitations because it attempts to describe a complex 3D structure in 2D. An imaging technique that could accurately resolve 3D architecture would provide valuable additions to the growing body of information on cuticle molecular biology and biochemistry. We present a novel application of 3D confocal scanning laser microscopy for visualizing the architecture, deposition patterns and micro-structure of plant cuticles, using the fluorescent stain auramine O. We demonstrate the utility of this technique by contrasting the fruit cuticle of wild-type tomato (Solanum lycopersicum cv. M82) with those of cutin-deficient mutants. We also introduce 3D cuticle modeling based on reconstruction of serial optical sections, and describe its use in identification of several previously unreported features of the tomato fruit cuticle.


Assuntos
Frutas/citologia , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Solanum lycopersicum/anatomia & histologia , Corantes , Frutas/anatomia & histologia , Solanum lycopersicum/citologia , Modelos Biológicos
11.
Plant J ; 60(2): 363-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19594708

RESUMO

Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato (Solanum lycopersicum) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 (cd1), cd2 and cd3, the fruit cuticles of which have a dramatic (95-98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.


Assuntos
Frutas/fisiologia , Lipídeos de Membrana/metabolismo , Doenças das Plantas/genética , Transpiração Vegetal/fisiologia , Solanum lycopersicum/genética , Água/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/fisiologia , Imageamento por Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transpiração Vegetal/genética , Ceras/química
12.
J Exp Bot ; 61(12): 3321-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20519339

RESUMO

Most studies of the biochemical and regulatory pathways that are associated with, and control, fruit expansion and ripening are based on homogenized bulk tissues, and do not take into consideration the multiplicity of different cell types from which the analytes, be they transcripts, proteins or metabolites, are extracted. Consequently, potentially valuable spatial information is lost and the lower abundance cellular components that are expressed only in certain cell types can be diluted below the level of detection. In this study, laser microdissection (LMD) was used to isolate epidermal and subepidermal cells from green, expanding Citrus clementina fruit and their transcriptomes were compared using a 20k citrus cDNA microarray and quantitative real-time PCR. The results show striking differences in gene expression profiles between the two cell types, revealing specific metabolic pathways that can be related to their respective organelle composition and cell wall specialization. Microscopy provided additional evidence of tissue specialization that could be associated with the transcript profiles with distinct differences in organelle and metabolite accumulation. Subepidermis predominant genes are primarily involved in photosynthesis- and energy-related processes, as well as cell wall biosynthesis and restructuring. By contrast, the most epidermis predominant genes are related to the biosynthesis of the cuticle, flavonoids, and defence responses. Furthermore, the epidermis transcript profile showed a high proportion of genes with no known function, supporting the original hypothesis that analysis at the tissue/cell specific levels can promote gene discovery and lead to a better understanding of the specialized contribution of each tissue to fruit physiology.


Assuntos
Citrus/genética , Perfilação da Expressão Gênica , Epiderme Vegetal/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Microdissecção/métodos , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética
13.
J Exp Bot ; 61(13): 3759-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571035

RESUMO

The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, assembly, and restructuring are entirely unknown. To identify candidate proteins with a role in cuticle biogenesis, a surface protein extract was obtained from tomato (Solanum lycopersicum) fruits by dipping in an organic solvent and the constituent proteins were identified by several complementary fractionation strategies and two mass spectrometry techniques. Of the approximately 200 proteins that were identified, a subset is potentially involved in the transport, deposition, or modification of the cuticle, such as those with predicted lipid-associated protein domains. These include several lipid-transfer proteins, GDSL-motif lipase/hydrolase family proteins, and an MD-2-related lipid recognition domain-containing protein. The epidermal-specific transcript accumulation of several of these candidates was confirmed by laser-capture microdissection and quantitative reverse transcription-PCR (qRT-PCR), together with their expression during various stages of fruit development. This indicated a complex pattern of cuticle deposition, and models for cuticle biogenesis and restructuring are discussed.


Assuntos
Lipídeos de Membrana/biossíntese , Proteínas de Plantas/metabolismo , Proteoma , Solanum lycopersicum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/classificação , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Espectrometria de Massas , Lipídeos de Membrana/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Ceras/metabolismo
14.
Plants (Basel) ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605018

RESUMO

Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures.

15.
Sci Rep ; 9(1): 20137, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882769

RESUMO

Modern crop breeding is based on the use of genetically and phenotypically diverse plant material and, consequently, a proper understanding of population structure and genetic diversity is essential for the effective development of breeding programs. An example is avocado, a woody perennial fruit crop native to Mesoamerica with an increasing popularity worldwide. Despite its commercial success, there are important gaps in the molecular tools available to support on-going avocado breeding programs. In order to fill this gap, in this study, an avocado 'Hass' draft assembly was developed and used as reference to study 71 avocado accessions which represent the three traditionally recognized avocado horticultural races or subspecies (Mexican, Guatemalan and West Indian). An average of 5.72 M reads per individual and a total of 7,108 single nucleotide polymorphism (SNP) markers were produced for the 71 accessions analyzed. These molecular markers were used in a study of genetic diversity and population structure. The results broadly separate the accessions studied according to their botanical race in four main groups: Mexican, Guatemalan, West Indian and an additional group of Guatemalan × Mexican hybrids. The high number of SNP markers developed in this study will be a useful genomic resource for the avocado community.


Assuntos
Genômica , Persea/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Filogenia , Melhoramento Vegetal , Transcriptoma
16.
PLoS One ; 14(2): e0212359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763398

RESUMO

Rosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult, and the use of tolerant rootstocks may present an effective method to lessen its impact. To date, no studies on the molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken. To shed light on the mechanisms underpinning disease susceptibility and tolerance, molecular analysis of the gene's response in two avocado rootstocks with a contrasting disease reaction was assessed. Gene expression profiles against R. necatrix were carried out in the susceptible 'Dusa' and the tolerant selection BG83 avocado genotypes by micro-array analysis. In 'Dusa', the early response was mainly related to redox processes and cell-wall degradation activities, all becoming enhanced after disease progression affected photosynthetic capacity, whereas tolerance to R. necatrix in BG83 relied on the induction of protease inhibitors and their negative regulators, as well as genes related to tolerance to salt and osmotic stress such as aspartic peptidase domain-containing proteins and gdsl esterase lipase proteins. In addition, three protease inhibitors were identified, glu protease, trypsin and endopeptidase inhibitors, which were highly overexpressed in the tolerant genotype when compared to susceptible 'Dusa', after infection with R. necatrix, reaching fold change values of 52, 19 and 38, respectively. The contrasting results between 'Dusa' and BG83 provide new insights into the different mechanisms involved in avocado tolerance to Phytophthora cinnamomi and R. necatrix, which are consistent with their biotrophic and necrotrophic lifestyles, respectively. The differential induction of genes involved in salt and osmotic stress in BG83 could indicate that R. necatrix penetration into the roots is associated with osmotic effects, suggesting that BG83's tolerance to R. necatrix is related to the ability to withstand osmotic imbalance. In addition, the high expression of protease inhibitors in tolerant BG83 compared to susceptible 'Dusa' after infection with the pathogen suggests the important role that these proteins may play in the defence of avocado rootstocks against R. necatrix.


Assuntos
Resistência à Doença/genética , Persea/metabolismo , Doenças das Plantas/genética , Xylariales/fisiologia , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genótipo , Persea/genética , Persea/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Componente Principal , Inibidores de Proteases/metabolismo
17.
J Exp Bot ; 59(10): 2769-79, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18522930

RESUMO

Cell wall disassembly in softening fruits is a complex process involving the cumulative action of many families of wall-modifying proteins on interconnected polysaccharide matrices. One strategy to elucidate the in vivo substrates of specific enzymes and their relative importance and contribution to wall modification is to suppress their expression in transgenic fruit. It has been reported previously that inhibiting the expression of pectate lyase genes by antisense technology in strawberry (Fragaria x ananassa Duch.) fruit resulted in prolonged fruit firmness. This suggested that pectin depolymerization might make a more important contribution to strawberry fruit softening than is often stated. In this present study, three independent transgenic lines were identified exhibiting a greater than 90% reduction in pectate lyase transcript abundance. Analyses of sequential cell wall extracts from the transgenic and control fruit collectively showed clear quantitative and qualitative differences in the extractability and molecular masses of populations of pectin polymers. Wall extracts from transgenic fruits showed a reduction in pectin solubility and decreased depolymerization of more tightly bound polyuronides. Additional patterns of differential extraction of other wall-associated pectin subclasses were apparent, particularly in the sodium carbonate- and chelator-soluble polymers. In addition, microscopic studies revealed that the typical ripening-associated loss of cell-cell adhesion was substantially reduced in the transgenic fruits. These results indicate that pectate lyase plays an important degradative role in the primary wall and middle lamella in ripening strawberry fruit, and should be included in synergistic models of cell wall disassembly.


Assuntos
Fragaria/fisiologia , Frutas/fisiologia , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/genética , Parede Celular/fisiologia , Cromatografia em Gel , Fragaria/química , Fragaria/enzimologia , Fragaria/genética , Frutas/química , Frutas/enzimologia , Frutas/genética , Pectinas/química , Pectinas/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/fisiologia
19.
J Exp Bot ; 58(14): 3875-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17975209

RESUMO

The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.


Assuntos
Frutas/fisiologia , Lipídeos de Membrana/fisiologia , Polissacarídeos/fisiologia , Solanum lycopersicum/fisiologia , Fenômenos Biomecânicos
20.
Food Chem ; 224: 270-279, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159266

RESUMO

Pectins analysed by AFM are visualized as individual chains, branched or unbranched, and aggregates. To investigate the nature of these structures, sodium carbonate soluble pectins from strawberry fruits were digested with endo-polygalacturonase M2 from Aspergillus aculeatus and visualized by AFM. A gradual decrease in the length of chains was observed as result of the treatment, reaching a minimum LN value of 22nm. The branches were not visible after 2h of enzymatic incubation. The size of complexes also diminished significantly with the enzymatic digestion. A treatment to hydrolyse rhamnogalacturonan II borate diester bonds neither affected chains length or branching nor complex size but reduced the density of aggregates. These results suggest that chains are formed by a mixture of homogalacturonan and more complex molecules composed by a homogalacturonan unit linked to an endo-PG resistant unit. Homogalacturonan is a structural component of the complexes and rhamnogalacturonan II could be involved in their formation.


Assuntos
Fragaria , Frutas/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Pectinas/química , Poligalacturonase/metabolismo , Ácidos Hexurônicos/análise , Hidrólise , Pectinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA