Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Genomics ; 25(1): 654, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956457

RESUMO

BACKGROUND: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos/genética , Genótipo , Vigor Híbrido , Carne , Alelos
2.
J Hered ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401185

RESUMO

This study evaluated the effectiveness of genetic introgression of the SLICK1 allele derived from Senepol cattle into the Holstein breed to enhance thermotolerance. The SLICK1 allele, located in PRLR gene, confers a short and sleek coat that is inherited as a simple dominant phenotype. Approximately 40 years ago, the University of Florida initiated efforts to introgress this allele into the Holstein population. Here we tracked the introgression of the SLICK1 allele using a medium-density genotyping array and a reference population of both breeds (50 Holstein, 46 Senepol). Among the 31 SLICK1+ Holsteins, there was 15.25% ± 11.11% (mean ± SD) Senepol ancestry on BTA20. Holsteins at the University of Florida descended from slick matings that did not inherit the SLICK1 allele (n=9) exhibited no Senepol ancestry. A secondary introgression of Senepol genetics in SLICK1+ animals was found on BTA4, spanning 54 markers and 15 genes, with 26.67% Senepol ancestry. This region, previously linked to heat stress adaptation, suggests that the introgression extends beyond the SLICK1 allele to incorporate additional beneficial genetics for thermal stress adaptation. These findings indicate that deliberate introgression of the SLICK1 allele enhances specific traits and potentially introduces other adaptive genetic variations. The study demonstrates the successful use of genetic interventions to improve livestock resilience against environmental challenges without significantly disrupting the recipient breed's genetic structure. The introgression of the SLICK1 allele serves as a model for breeding programs aimed at optimizing animal welfare and productivity in the face of global climate change while maintaining breed integrity.

3.
Int J Biometeorol ; 68(3): 435-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147121

RESUMO

The skin plays an important role in thermoregulation. Identification of genes on the skin that contribute to increased heat tolerance can be used to select animals with the best performance in warm environments. Our objective was to identify candidate genes associated with the heat stress response in the skin of Santa Ines sheep. A group of 80 sheep assessed for thermotolerance was kept in a climatic chamber for 8 days at a stress level temperature of 36 °C (10 am to 04 pm) and a maintenance temperature of 28 °C (04 pm to 10 am). Two divergent groups, with seven animals each, were formed after ranking them by thermotolerance using rectal temperature. From skin biopsy samples, total RNA was extracted, quantified, and used for RNA-seq analysis. 15,989 genes were expressed in sheep skin samples, of which 4 genes were differentially expressed (DE; FDR < 0.05) and 11 DE (FDR 0.05-0.177) between the two divergent groups. These genes are involved in cellular protection against stress (HSPA1A and HSPA6), ribosome assembly (28S, 18S, and 5S ribosomal RNA), and immune response (IGHG4, GNLY, CXCL1, CAPN14, and SAA-4). The candidate genes and main pathways related to heat tolerance in Santa Ines sheep require further investigation to understand their response to heat stress in different climatic conditions and under solar radiation. It is essential to verify whether these genes and pathways are present in different breeds and to understand the relationship between heat stress and other genes identified in this study.


Assuntos
Termotolerância , Ovinos/genética , Animais , Termotolerância/genética , Pele , Regulação da Temperatura Corporal/genética , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica
4.
BMC Genomics ; 21(1): 104, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000679

RESUMO

BACKGROUND: Transcription has a substantial genetic control and genetic dissection of gene expression could help us understand the genetic architecture of complex phenotypes such as meat quality in cattle. The objectives of the present research were: 1) to perform eQTL and sQTL mapping analyses for meat quality traits in longissimus dorsi muscle; 2) to uncover genes whose expression is influenced by local or distant genetic variation; 3) to identify expression and splicing hot spots; and 4) to uncover genomic regions affecting the expression of multiple genes. RESULTS: Eighty steers were selected for phenotyping, genotyping and RNA-seq evaluation. A panel of traits related to meat quality was recorded in longissimus dorsi muscle. Information on 112,042 SNPs and expression data on 8588 autosomal genes and 87,770 exons from 8467 genes were included in an expression and splicing quantitative trait loci (QTL) mapping (eQTL and sQTL, respectively). A gene, exon and isoform differential expression analysis previously carried out in this population identified 1352 genes, referred to as DEG, as explaining part of the variability associated with meat quality traits. The eQTL and sQTL mapping was performed using a linear regression model in the R package Matrix eQTL. Genotype and year of birth were included as fixed effects, and population structure was accounted for by including as a covariate the first PC from a PCA analysis on genotypic data. The identified QTLs were classified as cis or trans using 1 Mb as the maximum distance between the associated SNP and the gene being analyzed. A total of 8377 eQTLs were identified, including 75.6% trans, 10.4% cis, 12.5% DEG trans and 1.5% DEG cis; while 11,929 sQTLs were uncovered: 66.1% trans, 16.9% DEG trans, 14% cis and 3% DEG cis. Twenty-seven expression master regulators and 13 splicing master regulators were identified and were classified as membrane-associated or cytoskeletal proteins, transcription factors or DNA methylases. These genes could control the expression of other genes through cell signaling or by a direct transcriptional activation/repression mechanism. CONCLUSION: In the present analysis, we show that eQTL and sQTL mapping makes possible positional identification of gene and isoform expression regulators.


Assuntos
Perfilação da Expressão Gênica/veterinária , Técnicas de Genotipagem/veterinária , Carne/normas , Locos de Características Quantitativas , Processamento Alternativo , Animais , Bovinos , Mapeamento Cromossômico , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Modelos Lineares , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/veterinária
5.
BMC Genomics ; 20(1): 151, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791866

RESUMO

BACKGROUND: Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. RESULTS: The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server. The tissue restricted gene enrichment approach identified eleven pathways including "Endoplasmic reticulum membrane" that influenced multiple traits simultaneously. The DAVID functional classification analysis uncovered eleven clusters related to transmembrane or structural proteins. A gene network was constructed where the number of raw associated uncorrelated SNPs for each gene across all traits was used as a weight. A multiple SNP association analysis was performed for the top five most connected genes in the gene-trait network. The gene network identified the EVC2, ANXA10 and PKHD1 genes as potentially harboring multiple QTLs. Polymorphisms identified in structural proteins can modulate two different processes with direct effect on meat quality: in vivo myocyte cytoskeletal organization and postmortem proteolysis. CONCLUSION: The main result from the present analysis is the uncovering of several candidate genes associated with meat quality that have structural function in the skeletal muscle.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Característica Quantitativa Herdável , Carne Vermelha , Animais , Bovinos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
BMC Genomics ; 20(1): 735, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615414

RESUMO

BACKGROUND: Gastrointestinal nematode infection (GNI) is the most important disease affecting the small ruminant industry in U.S. The environmental conditions in the southern United States are ideal for the survival of the most pathogenic gastrointestinal nematode, Haemonchus contortus. Host genetic variation for resistance to H. contortus allows selective breeding for increased resistance of animals. This selection process increases the prevalence of particular alleles in sheep and goats and creates unique genetic patterns in the genome of these species. The aim of this study was to identify loci with divergent allelic frequencies in a candidate gene panel of 100 genes using two different approaches (frequentist and Bayesian) to estimate Fst outliers in three different breeds of sheep and goats exposed to H. contortus. RESULTS: Our results for sheep populations showed SNPs under selection in C3AR1, CSF3, SOCS2, NOS2, STAT5B, TGFB2 and IL2RA genes using frequentist and Bayesian approaches. For goats, SNPs in CD1D, ITGA9, IL12A, IL13RA1, CD86 and TGFB2 genes were under selection. Common signatures of selection in both species were observed in NOS2, TGFB2 and TLR4 genes. Directional selection was present in all SNPs evaluated in the present study. CONCLUSIONS: A total of 13 SNPs within 7 genes of our candidate gene panel related to H. contortus exposure were identified under selection in sheep populations. For goats, 11 SNPs within 7 genes were identified under selection. Results from this study support the hypothesis that resistance to H. contortus is likely to be controlled by many loci. Shared signatures of selection related to mechanisms of immune protection against H. contortus infection in sheep and goats could be useful targets in breeding programs aimed to produce resistant animals with low FEC.


Assuntos
Resistência à Doença , Cabras/genética , Imunidade , Ovinos/genética , Animais , Cruzamento , Frequência do Gene , Cabras/parasitologia , Cabras/fisiologia , Haemonchus/patogenicidade , Masculino , Polimorfismo de Nucleotídeo Único , Seleção Genética , Ovinos/parasitologia , Ovinos/fisiologia
7.
J Appl Genet ; 65(2): 383-394, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528244

RESUMO

Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.


Assuntos
Genômica , Endogamia , Bovinos/genética , Animais , Feminino , Genótipo , Homozigoto , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
8.
J Anim Sci Biotechnol ; 15(1): 66, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715151

RESUMO

BACKGROUND: Thermal stress in subtropical regions is a major limiting factor in beef cattle production systems with around $369 million being lost annually due to reduced performance. Heat stress causes numerous physiological and behavioral disturbances including reduced feed intake and decreased production levels. Cattle utilize various physiological mechanisms such as sweating to regulate internal heat. Variation in these traits can help identify genetic variants that control sweat gland properties and subsequently allow for genetic selection of cattle with greater thermotolerance. METHODS: This study used 2,401 Brangus cattle from two commercial ranches in Florida. Precise phenotypes that contribute to an animal's ability to manage heat stress were calculated from skin biopsies and included sweat gland area, sweat gland depth, and sweat gland length. All animals were genotyped with the Bovine GGP F250K, and BLUPF90 software was used to estimate genetic parameters and for Genome Wide Association Study. RESULTS: Sweat gland phenotypes heritability ranged from 0.17 to 0.42 indicating a moderate amount of the phenotypic variation is due to genetics, allowing producers the ability to select for favorable sweat gland properties. A weighted single-step GWAS using sliding 10 kb windows identified multiple quantitative trait loci (QTLs) explaining a significant amount of genetic variation. QTLs located on BTA7 and BTA12 explained over 1.0% of genetic variance and overlap the ADGRV1 and CCDC168 genes, respectively. The variants identified in this study are implicated in processes related to immune function and cellular proliferation which could be relevant to heat management. Breed of Origin Alleles (BOA) were predicted using local ancestry in admixed populations (LAMP-LD), allowing for identification of markers' origin from either Brahman or Angus ancestry. A BOA GWAS was performed to identify regions inherited from particular ancestral breeds that might have a significant impact on sweat gland phenotypes. CONCLUSIONS: The results of the BOA GWAS indicate that both Brahman and Angus alleles contribute positively to sweat gland traits, as evidenced by favorable marker effects observed from both genetic backgrounds. Understanding and utilizing genetic traits that confer better heat tolerance is a proactive approach to managing the impacts of climate change on livestock farming.

9.
Transl Anim Sci ; 8: txae093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979117

RESUMO

This study evaluated the association between the proportion of Brahman genetics and productivity of Brahman-Angus cows at weaning using a 31-yr dataset containing 6,312 cows and 5,405 pregnancies. Cows were contemporaneously reared and enrolled in yearly breeding seasons under subtropical conditions of North-Central Florida. They were evenly distributed in six-breed groups (G) according to the proportion of Brahman genetics: G0% to 19%, G21% to 34%, G38% (Brangus), G41% to 59%, G63% to 78%, and G81% to 100%. The proportion of cows calving (84.9%) did not differ across the six-breed groups. However, cows in the G81% to 100% weaned fewer calves (90.8%) than cows in the G0% to 19% and G21% to 34% (95.7%, each). The weaning rate of cows in the G38% (94.3%), G41% to 59% (94.2%), and G63% to 78% (93.0%) was intermediate between these three breed groups. The preweaning calf mortality was greater for cows in the G81% to 100% (9.2%) than cows in the G0% to 19% and G21% to 34% (4.3%, each), but intermediate for cows in the G38% (5.7%), G41% to 59% (5.8%), and G63% to 78% (7.0%). Cows in the G81% to 100% also weaned lighter calves (220.6 kg) than cows in the G0% to 19% (245.2 kg), G21% to 34% (250.2 kg), G38% (247.9 kg), G41% to 59% (252.5 kg), and G63% to 78% (245.2 kg). Cows in the G0% to 19% weaned lighter calves than cows with 21% to 78% of Brahman genetics. The 205-d adjusted weaning weight evidenced the less productive results of cows in G0% to 19% and G81% to 100% compared with other genetic groups, as they calved at the fastest and slowest rate, respectively. Thus, the 205-d adjusted weaning weight eliminated this bias. Additionally, younger cows weaned lighter calves; and male calves were heavier at weaning than female calves. Both parity order of cow and calf sex altered the magnitude of the described association between breed group of cows and calf weaning weights. Overall, after adjusting for weaning rate and age of calves at weaning, the number of kilograms produced per cow submitted to reproduction was less for cows in the G0% to 19% (191.1 kg) and G81% to 100 (181.8 kg) compared with cows in the G21% to 34 (197.0 kg), G38 (195.9 kg), G41% to 59 (199.7), and G63% to 78 (196.2). Cows in the G81% to 100% were the least productive. Thus, a proportion of Brahman genetics between 21% and 78% ensured superior productivity of Brahman-Angus cows subjected to subtropical conditions.

10.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39383295

RESUMO

The study of fatty acid (FA) and mineral content in beef is crucial for bridging health and taste. Understanding these components is essential for catering to consumer preferences for nutritious and tasty food, in line with current dietary trends and health recommendations. This holistic view of beef quality is key to helping both producers and consumers make more knowledgeable and health-oriented decisions in meat consumption. The objectives of this study were to 1) characterize the FA composition and mineral concentration of beef from Brangus cattle; 2) estimate their heritability; and 3) calculate the genetic and phenotypic correlations of carcass and meat quality traits to FA composition and mineral concentrations. Brangus steers were evaluated for meat quality and sampled for nutritional content measurements. Brangus cattle had palmitic acid levels as low as 21%, and stearic acid levels as high as 26%, which is notable since stearic acid is considered to have a neutral or potentially beneficial impact on cholesterol levels, unlike other saturated fats. Additionally, Brangus cattle had oleic acid levels as high as 53%, a beneficial monounsaturated fat, and linoleic acid concentrations as high as 12%, an essential omega-6 FA. Saturated FA showed weak negative correlations (-0.06 to -0.15) with hot carcass weight, marbling, and fat over ribeye, similar to polyunsaturated FA which had moderate negative correlations (-0.19 to -0.37) with these traits. Conversely, monounsaturated FA was positively correlated (0.16 to 0.34) with these traits, suggesting that higher levels of monounsaturated FA, particularly oleic acid, are associated with improved meat quality and consumer-desirable traits such as increased marbling. This relationship where higher marbling is linked with increased monounsaturated FA and decreased saturated FA is unique in Brangus cattle, differing from other breeds where increased intramuscular fat typically raises FA saturation levels. The variation in FA observed in Brangus cattle highlights the breed's potential to provide nutritionally enriched beef. With selective breeding, it may be possible to improve both the nutritional value and marbling of the meat, meeting consumer demand for healthier, tastier options. Overall, the study underscores the intricate relationships between FA composition, mineral content, and meat quality, with implications for breeding and nutrition strategies aimed at improving meat quality and healthfulness.


The fat composition and mineral content of beef influences both its taste and nutritional value. This study seeks to understand the relationship between meat quality and the nutritional value of beef from Brangus cattle. Animals varied greatly in their levels of essential omega-6 and monounsaturated fat. Higher levels of these fatty acids have been shown to improve the flavor of beef in addition to having a beneficial impact on cholesterol levels. Brangus cattle also exhibited a unique relationship between monounsaturated fat and meat quality, where higher levels of monounsaturated fat were associated with desirable traits such as increased marbling. Regarding mineral content, iron and zinc showed weak negative correlations with monounsaturated fat and moderate positive correlations with polyunsaturated fat. This study sheds light on the complex relations between fat profiles, mineral content, and meat quality. This understanding can inform breeding and management strategies to promote the production of meat that is not only palatable but also beneficial for consumer's health.


Assuntos
Ácidos Graxos , Animais , Bovinos/fisiologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Masculino , Carne/análise , Carne/normas , Composição Corporal , Minerais/análise , Carne Vermelha/análise , Carne Vermelha/normas
11.
Vet Res Commun ; 48(5): 3239-3243, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38954257

RESUMO

Here we report the case of a cow with two ovaries that each exhibited hyperplasia but that otherwise had normal gross morphology. Both ovaries had a large number of tertiary follicles on the ovarian surface. Oocytes from one ovary were studied in more detail. The transcriptome was largely similar to other oocytes. Oocytes could undergo cleavage at a rate consistent with other oocytes and result in blastocyst-stage embryo formation after in vitro maturation and fertilization. Review of the literature from cattle and other species did not reveal reports of a similar type of spontaneous ovarian abnormality. Whole genome sequencing revealed many single nucleotide polymorphisms with predicted large effects on protein structure that could potentially be causative for the phenotype. The variant considered most likely to cause the observed alteration in ovarian function was a mutation in the glycoprotein-modifying enzyme MAN1A2.


Assuntos
Doenças dos Bovinos , Mutação , Oócitos , Animais , Feminino , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/patologia , Folículo Ovariano , Hiperplasia/veterinária , Hiperplasia/genética , Hiperplasia/patologia , Ovário/patologia
12.
Heliyon ; 10(4): e25692, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370230

RESUMO

Thermotolerance has become an essential factor in the prevention of the adverse effects of heat stress, but it varies among animals. Identifying genes related to heat adaptability traits is important for improving thermotolerance and for selecting more productive animals in hot environments. The primary objective of this research was to find candidate genes in the liver that play a crucial role in the heat stress response of Santa Ines sheep, which exhibit varying levels of heat tolerance. To achieve this goal, 80 sheep were selected based on their thermotolerance and placed in a climate chamber for 10 days, during which the average temperature was maintained at 36 °C from 10 a.m. to 4 p.m. and 28 °C from 4 p.m. to 10 a.m. A subset of 14 extreme animals, with seven thermotolerant and seven non-thermotolerant animals based on heat loss (rectal temperature), were selected for liver sampling. RNA sequencing and differential gene expression analysis were performed. Thermotolerant sheep showed higher expression of genes GPx3, RGS6, GPAT3, VLDLR, LOC101108817, and EVC. These genes were mainly related to the Hedgehog signaling pathway, glutathione metabolism, glycerolipid metabolism, and thyroid hormone synthesis. These enhanced pathways in thermotolerant animals could potentially mitigate the negative effects of heat stress, conferring greater heat resistance.

13.
J Anim Sci Biotechnol ; 14(1): 137, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932831

RESUMO

BACKGROUND: In beef cattle, more than 50% of the energy input to produce a unit of beef is consumed by the female that produced the calf. Development of genomic tools to identify females with high genetic merit for reproductive function could increase the profitability and sustainability of beef production. RESULTS: Genome-wide association studies (GWAS) were performed using a single-step genomic best linear unbiased prediction approach on pregnancy outcome traits from a population of Angus-Brahman crossbred heifers. Furthermore, a validation GWAS was performed using data from another farm. Heifers were genotyped with the Bovine GGP F250 array that contains 221,077 SNPs. In the discovery population, heifers were bred in winter breeding seasons involving a single round of timed artificial insemination (AI) followed by natural mating for 3 months. Two phenotypes were analyzed: pregnancy outcome to first-service AI (PAI; n = 1,481) and pregnancy status at the end of the breeding season (PEBS; n = 1,725). The heritability was estimated as 0.149 and 0.122 for PAI and PEBS, respectively. In the PAI model, one quantitative trait locus (QTL), located between 52.3 and 52.5 Mb on BTA7, explained about 3% of the genetic variation, in a region containing a cluster of γ-protocadherin genes and SLC25A2. Other QTLs explaining between 0.5% and 1% of the genetic variation were found on BTA12 and 25. In the PEBS model, a large QTL on BTA7 was synonymous with the QTL for PAI, with minor QTLs located on BTA5, 9, 10, 11, 19, and 20. The validation population for pregnancy status at the end of the breeding season were Angus-Brahman crossbred heifers bred by natural mating. In concordance with the discovery population, the large QTL on BTA7 and QTLs on BTA10 and 12 were identified. CONCLUSIONS: In summary, QTLs and candidate SNPs identified were associated with pregnancy outcomes in beef heifers, including a large QTL associated with a group of protocadherin genes. Confirmation of these associations with larger populations could lead to the development of genomic predictions of reproductive function in beef cattle. Moreover, additional research is warranted to study the function of candidate genes associated with QTLs.

14.
Transl Anim Sci ; 7(1): txad021, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36970314

RESUMO

The quality grade system used in the United States to identify carcasses with superior eating satisfaction to consumers is based on the amount of marbling within the ribeye and the maturity of the carcass. However, the most important quality attribute for consumers is tenderness. The objective of this study was to investigate the phenotypic correlations between carcass and meat quality traits of strip loin steaks from Brangus steers, particularly the relation between the United States Department of Agriculture (USDA) quality grade and tenderness. Warner-Bratzler shear force (WBSF) values in this study averaged 5.10 ± 0.96 kg, slightly higher than the national average of 4.55 ± 1.14 kg. Average WBSF across all quality grades ranged from 4.90 to 5.27 kg with standard deviations ranging from 0.78 to 1.40 kg. In the present Brangus steer population, there was a weak negative (-0.13) but favorable correlation (P < 0.05) between marbling score and tenderness measured through WBSF. The USDA quality grade had a significant (P = 0.02) effect on WBSF. The WBSF least square means were significantly higher in the Select compared with the Choice¯, and Choiceº quality grades. The Choice⁺ and Prime quality grades were not significantly different from any quality grades regarding the WBSF. The standard quality grade did not have significantly different WBSF least square means from any other quality grade. The range of WBSF values was large, especially in the lower quality grade categories, indicating that there is considerable variation in tenderness, even within quality grade. The high level of variation in tenderness within USDA quality grades highlights the limitation of the USDA grading system to predict eating quality or tenderness.

15.
Front Genet ; 14: 1107468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229201

RESUMO

Cattle lose heat predominantly through cutaneous evaporation at the skin-hair coat interface when experiencing heat stress. Sweating ability, sweat gland properties, and hair coat properties are a few of the many variables determining the efficacy of evaporative cooling. Sweating is a significant heat dissipation mechanism responsible for 85% of body heat loss when temperatures rise above 86°F. The purpose of this study was to characterize skin morphological parameters in Angus, Brahman, and their crossbred cattle. Skin samples were taken during the summer of 2017 and 2018 from a total of 319 heifers from six breed groups ranging from 100% Angus to 100% Brahman. Epidermis thickness decreased as the percentage of Brahman genetics increased where the 100% Angus group had a significantly thicker epidermis compared to the 100% Brahman animals. A more extended epidermis layer was identified in Brahman animals due to more pronounced undulations in this skin layer. Breed groups with 75% and 100% Brahman genes were similar and had the largest sweat gland area, indicative of superior resilience to heat stress, compared to breed groups with 50% or lower Brahman genetics. There was a significant linear breed group effect on sweat gland area indicating an increase of 862.0 µm2 for every 25% increase in Brahman genetics. Sweat gland length increased as the Brahman percentage increased, while the sweat gland depth showed an opposite trend, decreasing from 100% Angus to 100% Brahman. The number of sebaceous glands was highest in 100% Brahman animals which had about 1.77 more sebaceous glands (p < 0.05) per 4.6 mm2area. Conversely, the sebaceous gland area was greatest in the 100% Angus group. This study identified significant differences in skin properties related to heat exchange ability between Brahman and Angus cattle. Equally important, these differences are also accompanied by significant levels of variation within each breed, which is indicative that selection for these skin traits would improve the heat exchange ability in beef cattle. Further, selecting beef cattle for these skin traits would lead to increased resilience to heat stress without disrupting production traits.

16.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331079

RESUMO

Bos taurus × Bos indicus crosses are widespread in tropical and subtropical regions, nonetheless, quantitative information about the influence of B. indicus genetics on the reproductive performance of beef cattle is lacking. Herein, we determined the association between level of B. indicus genetics and reproduction from a 31-yr dataset comprising sequential breeding seasons of the University of Florida multibreed herd (n = 6,503 Angus × Brahman cows). The proportion of B. indicus genetics in this herd is evenly distributed by each 1/32nd or approximately 3-percentage points. From 1989 to 2020, the estrous cycle of cows was synchronized for artificial insemination (AI) based on detected estrus or timed-AI (TAI) using programs based on gonadotropin-releasing hormone and prostaglandin, and progestin/progesterone. All cows were exposed to natural service after AI and approximately 90-d breeding seasons, considering the day of AI as day 0. The proportion of B. indicus genetics of cows was associated negatively with pregnancy per AI, ranging from 51.6% for cows with 0%-19% of B. indicus genetics to 37.4% for cows with 81%-100% of B. indicus genetics. Similar association was found for estrous response at the end of the synchronization protocol, ranging from 66.3% to 38.4%, respectively. This reduced estrous response helped to explain the pregnancy results, once the pregnancy to AI of cows showing estrus was 2.3-fold greater than for those not showing estrus and submitted to TAI. Despite reduced pregnancy per AI, the increase in the proportion of B. indicus genetics of cows was not associated with a reduction in the proportion of pregnant cows at the end of the breeding season. Nevertheless, the interval from entering the breeding season to pregnancy was lengthened as the proportion of B. indicus genetics of cows increased. The median days to pregnancy was extended by 25 when the proportion of B. indicus genetics surpassed 78% compared with less than 20%. Thus, the increase in the proportion of B. indicus genetics of cows was related to a reduction in pregnancy per AI and lengthening the interval to attain pregnancy during the breeding season, but not with the final proportion of pregnant cows. As a result, reproductive management strategies directed specifically to cows with a greater proportion of B. indicus genetics are needed to improve the rate of pregnancy in beef herds.


Cow­calf operations in the tropics and sub-tropics have benefited from the environmental adaptation provided by Bos indicus genetics. However, reproductive performance has been a cause of concern, although poorly quantified. This study characterized how much the B. indicus genetics in crossbred cows influence herd reproduction. We analyzed data from cows with known proportions of Angus and Brahman genetics, from the same crossbred herd, for 31 sequential breeding seasons. The increase in the proportion of B. indicus genetics reduced estrous response and pregnancy per artificial insemination after estrous synchronization, but not the proportion of pregnant cows at the end of the breeding season. Interval from the beginning of the breeding season to pregnancy was extended by 25 d when the proportion of B. indicus genetics surpassed 78%. In conclusion, reproductive management strategies directed specifically to cows with a greater proportion of B. indicus genetics are needed to improve the rate of pregnancy in beef herds.


Assuntos
Dinoprosta , Sincronização do Estro , Gravidez , Feminino , Bovinos/genética , Animais , Sincronização do Estro/métodos , Inseminação Artificial/veterinária , Inseminação Artificial/métodos , Reprodução/genética , Estro , Progesterona , Hormônio Liberador de Gonadotropina/genética
17.
Int J Parasitol ; 51(7): 535-543, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549580

RESUMO

Florida Native sheep is among the sheep breeds best adapted to humid and hot climatic conditions such as those of Florida, USA, and have shown a superior ability to regulate nematode burdens. This is one of the oldest sheep breeds in North America and is an endangered species. To ensure genetic diversity and long-term survival of the breed, protection of the current genetic stock is critical and conservation efforts are required to promote its breeding and production. The objective of the present study was to investigate the importance of additive and non-additive genetic effects on resistance to natural Haemonchus contortus infections in Florida Native sheep using a whole genome scan. A total of 200 sheep were evaluated in the present study. Phenotypic records included faecal egg count (FEC, eggs/gram), FAMACHA® score, packed cell volume (PCV, %), body condition score and average daily gain (ADG, kg). Sheep were genotyped using the GGP Ovine 50K SNP chip and 45.2 k single nucleotide polymorphism (SNP) markers spanning the entire genome were available for quality control procedures. Mixed models were used to analyse the response variables and included the identity by state matrix to control for population structure. Bonferroni correction was used to control for multiple testing and a second arbitrary threshold (0.1 × 10-3) was used. Fifteen SNPs with additive and non-additive genetic effects and located in Ovis aries chromosome OAR1, 2, 3, 6, 8, 10, 11, 12, 13 and 21 were associated with FEC, FAMACHA® score, PCV and ADG. These SNPs could be potential genetic markers for resistance to natural H. contortus exposure in Florida Native sheep.


Assuntos
Hemoncose , Haemonchus , Doenças dos Ovinos , Animais , Fezes , Florida , Hemoncose/veterinária , Haemonchus/genética , Contagem de Ovos de Parasitas , Ovinos
18.
Front Genet ; 12: 627055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815465

RESUMO

Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus-Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell-cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.

19.
PLoS One ; 15(11): e0240895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175867

RESUMO

RNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.91±8.69 months. Tenderness, juiciness and connective tissue assessed by sensory panel, along with marbling, Warner-Bratzler Shear Force (WBSF) and cooking loss, were measured in longissimus dorsi muscle. Total RNA was extracted from muscle and one RNA-seq library per sample was constructed, multiplexed, and sequenced based on protocols by Illumina HiSeq-3000 platform to generate 2×101 bp paired-end reads. The overall read mapping rate using the Btau_4.6.1 reference genome was 63%. A total of 8,799 genes were analyzed using two different methodologies, an expression association and a DE analysis. A gene and exon expression association analysis was carried out using a meat quality index on all 80 samples as a continuous response variable. The expression of 208 genes and 3,280 exons from 1,565 genes was associated with the meat quality index (p-value ≤ 0.05). A gene and isoform DE evaluation was performed analyzing two groups with extreme WBSF, tenderness and marbling. A total of 676 (adjusted p-value≤0.05), 70 (adjusted p-value≤0.1) and 198 (adjusted p-value≤0.1) genes were DE for WBSF, tenderness and marbling, respectively. A total of 106 isoforms from 98 genes for WBSF, 13 isoforms from 13 genes for tenderness and 43 isoforms from 42 genes for marbling (FDR≤0.1) were DE. Cytoskeletal and transmembrane anchoring genes and pathways were identified in the expression association, DE and the gene enrichment analyses; these proteins can have a direct effect on meat quality. Cytoskeletal proteins and transmembrane anchoring molecules can influence meat quality by allowing cytoskeletal interaction with myocyte and organelle membranes, contributing to cytoskeletal structure and architecture maintenance postmortem.


Assuntos
Proteínas do Citoesqueleto/genética , Músculo Esquelético/metabolismo , Controle de Qualidade , Locos de Características Quantitativas , Carne Vermelha/análise , Criação de Animais Domésticos/métodos , Animais , Bovinos , Proteínas do Citoesqueleto/metabolismo , Masculino , RNA-Seq , Carne Vermelha/normas , Seleção Artificial/genética , Estados Unidos
20.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315036

RESUMO

Bos taurus indicus cattle have the superior ability for the regulation of body temperature during heat stress due to a number of physiological and cellular level adaptive traits. The objectives of this study were to quantify the change in body temperature in heifers with various proportions of Brahman genes per unit increase in heat stress as measured by temperature-humidity index (THI) and to assess how different breed groups responded to varying intensity and duration of heat stress. A total of 299 two-yr-old heifers from six breed groups ranging from 100% Angus to 100% Brahman were evaluated under hot and humid conditions during 2017 and 2018 summer days. Two strategies were used to estimate the plasticity in body temperature of breed groups in response to environmental challenges: 1) a random regression mixed model was used to estimate reaction norm parameters for each breed group in response to a specified environmental heat stress and 2) a repeated measures mixed model was used to evaluate the response to different environmental heat loads. The reaction norm model estimated an intercept and slope measuring the change in body temperature per unit increase in THI environmental heat stress for different breed groups of animals and allowed the identification of genotypes which are robust, with low slope values indicative of animals that are able to maintain normal body temperature across a range of environments. The repeated measures mixed model showed that Brahman cattle have an advantage under moderate or high heat stress conditions but both Angus and Brahman breed groups are greatly affected when heat stress is severe. A critical factor appears to be the opportunity to cool down during the night hours more than the number of hours with extreme THI. With heat stress conditions predicted to intensify and expand into currently temperate zones, developing effective strategies to ensure sustainable beef production systems are imperative. Effective strategies will require the identification of the genes conferring the superior thermotolerance in Brahman cattle.


Assuntos
Bovinos/genética , Transtornos de Estresse por Calor/veterinária , Termotolerância/genética , Animais , Temperatura Corporal/genética , Feminino , Predisposição Genética para Doença , Transtornos de Estresse por Calor/genética , Resposta ao Choque Térmico , Temperatura Alta , Umidade , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA