Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 490: 117030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981531

RESUMO

Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 µM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.


Assuntos
Antivirais , Aorta , Células Endoteliais , Pulmão , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Antivirais/toxicidade , Antivirais/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia/métodos , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos
2.
Cancer Cell Int ; 22(1): 218, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725466

RESUMO

BACKGROUND: Protein disulphide isomerases (PDIs) play an important role in cancer progression. However, the relative contribution of the various isoforms of PDI in tumorigenesis is not clear. METHODS: The content of PDI isoforms in 22 cancer cells lines was investigated using LC-MS/MS-based proteomic analysis. The effects of PDIA1, PDIA3 and PDIA17 inhibition on the proliferation, migration and adhesion of MCF-7 and MDA-MB-231 cells, identified as high and low PDIA17 expressing cells, respectively, were assessed using novel aromatic N-sulphonamides of aziridine-2-carboxylic acid derivatives as PDI inhibitors. RESULTS: PDIA1 and PDIA3 were the most abundant in cancer cell lysates and were also detected extracellularly in breast cancer cells (MDA-MB-231 and MCF-7). Some cancer cell lines (e.g., MCF-7, HT-29) showed upregulated expression of PDIA17, whereas in others (e.g., MDA-MB-231, 67NR), PDIA17 was not detected. The simultaneous inhibition of PDIA1 and PDIA3 showed similar anti-proliferative effects in MCF-7 and MDA-MB-231 breast cancer cells. However, the inhibition of PDIA1 and PDIA17 in the MCF-7 cell line resulted in more effective anti-adhesive and anti-proliferative effects. CONCLUSIONS: PDIA1 and PDIA3 represent major isoforms of multiple cancer cells, and their non-selective inhibition displays significant anti-proliferative effects irrespective of whether or not PDIA17 is present. The more pronounced anti-adhesive effects of PDI inhibition in hormone-sensitive MCF-7 cells featured by higher levels of PDIs when compared to triple-negative MDA-MB-231 cells suggests that targeting extracellular PDIA1 and PDIA3 with or without additional PDIA17 inhibition may represent a strategy for personalized anti-adhesive, anti-metastatic therapy in cancers with high PDI expression.

3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673688

RESUMO

Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome-lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1-30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.


Assuntos
Antimaláricos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagia , Cloroquina/farmacologia , Endotélio Vascular/metabolismo , Lipídeos/análise , Fusão de Membrana , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Humanos
4.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445374

RESUMO

Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening. Dabigatran's effects on endothelial function in Ang II-treated mice were evidenced by improved NO-dependent relaxation in the aorta in response to acetylcholine in vivo (MRI measurements) and increased systemic NO bioavailability (NO2- quantification) with a concomitant increased ex vivo production of endothelium-derived NO (EPR analysis). Dabigatran treatment also contributed to the reduction in the endothelial expression of pro-inflammatory vWF and ICAM-1. Interestingly, the fall in systemic NO bioavailability in Ang II-treated mice was associated with increased 20-HETE concentration in plasma (UPLC-MS/MS analysis), which was normalised by dabigatran treatment. Taking together, the inhibition of thrombin activity in Ang II-induced hypertension in mice improves the NO-dependent function of vascular endothelium and normalises the 20-HETE-depedent pathway without affecting the blood pressure and vascular remodelling.


Assuntos
Angiotensina II/efeitos adversos , Antitrombinas/administração & dosagem , Dabigatrana/administração & dosagem , Ácidos Hidroxieicosatetraenoicos/sangue , Hipertensão/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Antitrombinas/farmacologia , Cromatografia Líquida , Dabigatrana/farmacologia , Modelos Animais de Doenças , Hipertensão/sangue , Hipertensão/induzido quimicamente , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Espectrometria de Massas em Tandem , Fator de von Willebrand/metabolismo
5.
Nanomedicine ; 16: 97-105, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550804

RESUMO

Endothelial dysfunction is recognized as a critical condition in the development of cardiovascular disorders. This multifactorial process involves changes in the biochemical and mechanical properties of endothelial cells leading to disturbed release of vasoprotective mediators. Hypercholesterolemia and increased stiffness of the endothelial cortex are independently shown to result in reduced release of nitric oxide and thus endothelial dysfunction. However, direct evidence linking these parameters to each other is missing. Here, a novel method combining Raman spectroscopy for biochemical analysis and Atomic Force Microscopy (AFM) for analyzing the endothelial nanomechanics was established. Using this dual approach, the same areas of native ex vivo aortas were investigated, either derived from mice with endothelial dysfunction (ApoE/LDLR-/-) or wild type mice. In particular an increased intracellular lipid content and elevated cortical stiffness/elasticity were shown in ApoE/LDLR-/- aortas, demonstrating a direct link between endothelial dysfunction, the biochemical composition and the nanomechanical properties of endothelial cells.


Assuntos
Aorta/patologia , Apolipoproteínas E/genética , Endotélio Vascular/patologia , Microscopia de Força Atômica/métodos , Receptores de LDL/genética , Análise Espectral Raman/métodos , Animais , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo
6.
Platelets ; 29(5): 476-485, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28745543

RESUMO

Numerous in vitro experiments have confirmed that a dysfunctional endothelium is characterized by, inter alia, a higher affinity for binding of platelets and leukocytes. However, there is still no direct evidence for greater interaction between platelets and intact endothelium in in vivo animal models of diabetes. Therefore, the present study examines the pro-adhesive properties of endothelium change in vivo as an effect of streptozotocin (STZ)-induced diabetes and the role of two key platelet receptors: GPIb-IX-V and GPIIb/IIIa. Mice of C57BL strain with streptozotocin-induced diabetes were used in the study. Flow cytometry was used to assess basal activation and reactivity of platelets. Adhesion of platelets to the vascular wall was visualized with the use of intravital microscopy in mesentery. The contribution of GPIIb/IIIa and GPIb-IX-V was evaluated by the injection of Fab fragments of respective antibodies. The integrity of the endothelium and vWf expression were evaluated histochemically. Basal activation and reactivity of platelets in streptozotocin-diabetic mice were elevated. Blood platelets adhered more often to the vascular wall of diabetic mice than nondiabetic animals: 11.9 (6.4; 32.8) plt/min/mm2 (median [IQR]) vs 2.7 (1.3; 6.4) plt/min/mm2. The injection of anti-GPIbα antibodies decreased the number of adhering platelets from 89.5 (34.0; 113.1) plt/min/mm2 (median [IQR]) in mice treated with isotype antibodies to 3.1 (1.7; 5.6) plt/min/mm2 in mice treated with blocking antibodies. The effect of GPIIb/IIIa blockage was not significant. Immunohistochemistry revealed a higher expression of vWF in the endothelium of STZ mice, but no substantial changes in endothelial morphology were detected. To conclude, the study shows that the platelets interact more frequently with the mesenteric vascular bed in mice with 1-month STZ-induced diabetes than in healthy mice. These interactions are mediated via platelet GPIb-IX-V and are driven by increased expression of vWF in endothelial cells.


Assuntos
Plaquetas/metabolismo , Diabetes Mellitus Experimental/sangue , Microscopia Intravital/métodos , Adesividade Plaquetária/efeitos dos fármacos , Fator de von Willebrand/metabolismo , Animais , Endotélio Vascular/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
7.
J Pharmacol Exp Ther ; 356(2): 514-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26631491

RESUMO

1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Niacina/uso terapêutico , Niacinamida/análogos & derivados , Receptores de LDL/deficiência , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacina/farmacologia , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Técnicas de Cultura de Órgãos , Resultado do Tratamento
8.
Respir Res ; 17(1): 108, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581040

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with inflammatory response but it is unknown whether it is associated with alterations in NNMT activity and MNA plasma concentration. Here we examined changes in NNMT-MNA pathway in PAH in rats and humans. METHODS: PAH in rats was induced by a single subcutaneous injection of MCT (60 mg/kg). Changes in NNMT activity in the lungs and liver (assessed as the rate of conversion of nicotinamide (NA) to MNA), changes in plasma concentration of MNA and its metabolites (analyzed by LC/MS) were analyzed in relation to PAH progression. PAH was characterized by right ventricular hypertrophy (gross morphology), cardiac dysfunction (by MRI), lung histopathology, lung ultrastructure, and ET-1 concentration in plasma. NO-dependent and PGI2-dependent function in isolated lungs was analyzed. In naive patients with idiopathic pulmonary hypertension (IPAH) characterized by hemodynamic and biochemical parameters MNA and its metabolites in plasma were also measured. RESULTS: MCT-injected rats developed hypertrophy and functional impairment of the right ventricle, hypertrophy of the pulmonary arteries, endothelial ultrastructural defects and a progressive increase in ET-1 plasma concentration-findings all consistent with PAH development. In isolated lung, NO-dependent regulation of hypoxic pulmonary vasoconstriction was impaired, while PGI2 production (6-keto-PGF1α) was increased. NNMT activity increased progressively in the liver and in the lungs following MCT injection, and NNMT response was associated with an increase in MNA and 6-keto-PGF1α concentration in plasma. In IPAH patients plasma concentration of MNA was elevated as compared with healthy controls. CONCLUSIONS: Progression of pulmonary hypertension is associated with the activation of the NNMT-MNA pathway in rats and humans. Given the vasoprotective activity of exogenous MNA, which was previously ascribed to PGI2 release, the activation of the endogenous NNMT-MNA pathway may play a compensatory role in PAH.


Assuntos
Hipertensão Pulmonar/enzimologia , Pulmão/enzimologia , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/metabolismo , Transdução de Sinais , 6-Cetoprostaglandina F1 alfa/sangue , Adulto , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Endotelina-1/sangue , Epoprostenol/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Fígado/enzimologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Monocrotalina , Niacinamida/sangue , Niacinamida/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar , Fatores de Tempo , Disfunção Ventricular Direita/enzimologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita
9.
Acta Physiol (Oxf) ; 240(4): e14116, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38400621

RESUMO

AIM: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS: The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION: In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.


Assuntos
Angiotensina II , Doenças Vasculares , Camundongos , Masculino , Animais , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Análise de Onda de Pulso , Trombina/metabolismo , Trombina/farmacologia , Camundongos Endogâmicos C57BL , Doenças Vasculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio Vascular , Óxido Nítrico/metabolismo
10.
Analyst ; 138(21): 6645-52, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24040642

RESUMO

In this work the quantitative determination of atherosclerotic lesion area (ApoE/LDLR(-/-) mice) by FT-IR imaging is presented and validated by comparison with atherosclerotic lesion area determination by classic Oil Red O staining. Cluster analysis of FT-IR-based measurements in the 2800-3025 cm(-1) range allowed for quantitative analysis of the atherosclerosis plaque area, the results of which were highly correlated with those of Oil Red O histological staining (R(2) = 0.935). Moreover, a specific class obtained from a second cluster analysis of the aortic cross-section samples at different stages of disease progression (3, 4 and 6 months old) seemed to represent the macrophages (CD68) area within the atherosclerotic plaque.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose , Progressão da Doença , Placa Aterosclerótica/química , Receptores de LDL/deficiência , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Aterosclerose/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo
11.
Prostaglandins Other Lipid Mediat ; 98(3-4): 107-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465673

RESUMO

Adequate endothelial production of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin (PGI2) is critical to the maintenance of vascular homeostasis. However, it is not clear whether alterations in each of these vasodilatory pathways contribute to the impaired endothelial function in murine atherosclerosis. In the present study, we analyze the alterations in NO-, EDHF- and PGI2-dependent endothelial function in the thoracic aorta in relation to the development of atherosclerotic plaques in apoE/LDLR⁻/⁻ mice. We found that in the aorta of 2-month-old apoE/LDLR⁻/⁻ mice there was no lipid deposition, subendothelial macrophage accumulation; and matrix metalloproteinase (MMP) activity was low, consistent with the absence of atherosclerotic plaques. Interestingly, at this stage the endothelium was already activated and hypertrophic as evidenced by electron microscopy, while acetylcholine-induced NO-dependent relaxation in the thoracic aorta was impaired, with concomitant upregulation of cyclooxygenase-2 (COX-2)/PGI2 and EDHF (epoxyeicosatrienoic acids, EETs) pathways. In the aorta of 3-6-month-old apoE/LDLR⁻/⁻ mice, lipid deposition, macrophage accumulation and MMP activity in the intima were gradually increased, while impairment of NO-dependent function and compensatory upregulation of COX-2/PGI2 and EDHF pathways were more accentuated. These results suggest that impairment of NO-dependent relaxation precedes the development of atherosclerosis in the aorta and early upregulation of COX-2/PGI2 and EDHF pathways may compensate for the loss of the biological activity of NO.


Assuntos
Aorta/fisiopatologia , Apolipoproteínas E/deficiência , Fatores Biológicos/metabolismo , Endotélio Vascular/fisiopatologia , Epoprostenol/metabolismo , Óxido Nítrico/metabolismo , Receptores de LDL/deficiência , Animais , Aorta/patologia , Apolipoproteínas E/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/fisiopatologia , Técnicas In Vitro , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/metabolismo , Regulação para Cima , Vasodilatação
12.
Int J Biochem Cell Biol ; 151: 106292, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038127

RESUMO

This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Nicotinamida N-Metiltransferase , Cromatina/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Metabolismo Energético , Humanos , Lipopolissacarídeos/farmacologia , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1869(3): 119186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902479

RESUMO

Cationic amphiphilic drugs (CADs) are known from lysosomotropism, drug-induced phospholipidosis (DIPL), activation of autophagy, and decreased cell viability, but the relationship between these events is not clear and little is known about DIPL in the endothelium. In this work, the effects of fluoxetine, amiodarone, clozapine, and risperidone on human microvascular endothelial cells (HMEC-1) were studied using a combined methodology of label-free Raman imaging and fluorescence staining. Raman spectroscopy was applied to characterize biochemical changes in lipid profile and their distribution in the cellular compartments, while fluorescence staining (LysoTracker, LipidTOX, LC3B, and JC-1) was used to analyze lysosome volume expansion, activation of autophagy, lipid accumulation, and mitochondrial membrane depolarization. We demonstrated that fluoxetine, amiodarone, and clozapine, but not risperidone, at non-toxic concentrations induced lipid accumulations in the perinuclear and cytoplasmic regions of endothelial cells. Spectroscopic markers of DIPL included a robust increase in the ratio (lipid/(protein + lipid)), an increase in choline-containing lipid, fatty acids, and the presence of cholesterol esters, while starvation-induced activated autophagy revealed a spectroscopic signature associated with subtle changes in the lipid profile only. Interestingly, lysosomal volume expansion, occurrence of DIPL, and activation of autophagy induced by selected CADs all depended on drug-accumulation in acidic pH of lysosome cellular compartments whereas reduced endothelial viability did not, and was attributed to mitochondrial mechanisms as evidenced by a decreased mitochondrial transmembrane potential. In conclusion, drug-induced phospholipidosis in the endothelium did not reduce endothelial viability per se and can be efficiently assayed by Raman imaging.


Assuntos
Antidepressivos/farmacologia , Células Endoteliais/metabolismo , Imagem Óptica/métodos , Preparações Farmacêuticas/administração & dosagem , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Análise Espectral Raman/métodos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos
14.
Analyst ; 136(24): 5247-55, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22007352

RESUMO

Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.


Assuntos
Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/patologia , Lipídeos/análise , Receptores de LDL/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Ésteres do Colesterol/química , Análise por Conglomerados , Diagnóstico por Imagem , Feminino , Ácido Linoleico/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/análise , Palmitatos/análise , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Triglicerídeos/química
15.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118911, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227312

RESUMO

In this work, the effect of an early oxidative stress on human endothelial cells induced by menadione was studied using a combined methodology of label-free Raman imaging and fluorescence staining. Menadione-induced ROS-dependent endothelial inflammation in human aorta endothelial cells (HAEC) was studied with focus on changes in cytochrome, proteins, nucleic acids and lipids content and their distribution in cells. Fluorescence staining (ICAM-1, VCAM-1, vWF, LipidTox, MitoRos and DCF) was used to confirm endothelial inflammation and ROS generation. The results showed that short time, exposure to menadione did not cause their apoptosis or necrosis (Annexin V Apoptosis Detection Kit) within the 3 h timescale of measurement. On the other hand, 3 h of incubation, did result in endothelial inflammation (ICAM-1, VCAM-1, vWF) that was associated with an increased ROS formation (MitoRos and DCF) suggesting the oxidative stress-mediated inflammation. Chemometric analysis of spectral data enabled the determination of spectroscopic markers of menadione-induced oxidative stress-mediated endothelial inflammation including a decrease of the bands intensity of cytochrome (604, 750, 1128, 1315 and 1585 cm-1), nucleic acids bands (785 cm-1), proteins (1005 cm-1) and increased intensity of lipid bands (722, 1085, 1265, 1303, 1445 and 1660 cm-1), without changes in the spectroscopic signature of the cell nucleus. In conclusion, oxidative stress resulting in endothelial inflammation was featured by significant alterations in the number of biochemical changes in mitochondria and other cellular compartments detected by Raman spectroscopy. Most of these, coexisted with results from fluorescence imaging, and most importantly occurred earlier than the detection of increased ROS or markers of endothelial inflammation.


Assuntos
Aorta/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Análise Espectral Raman/métodos , Vitamina K 3/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/metabolismo , Imagem Óptica/métodos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119082, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153425

RESUMO

Nicotinamide N-methyltransferase (NNMT, EC 2.1.1.1.) plays an important role in the growth of many different tumours and is also involved in various non-neoplastic disorders. However, the presence and role of NNMT in the endothelium has yet to be specifically explored. Here, we characterized the functional activity of NNMT in the endothelium and tested whether NNMT regulates endothelial cell viability. NNMT in endothelial cells (HAEC, HMEC-1 and EA.hy926) was inhibited using two approaches: pharmacological inhibition of the enzyme by NNMT inhibitors (5-amino-1-methylquinoline - 5MQ and 6-methoxynicotinamide - JBSF-88) or by shRNA-mediated silencing. Functional inhibition of NNMT was confirmed by LC/MS/MS-based analysis of impaired MNA production. The effects of NNMT inhibition on cellular viability were analyzed in both the absence and presence of menadione. Our results revealed that all studied endothelial lines express relatively high levels of functionally active NNMT compared with cancer cells (MDA-MB-231). Although the aldehyde oxidase 1 enzyme was also expressed in the endothelium, the further metabolites of N1-methylnicotinamide (N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-3-carboxamide) generated by this enzyme were not detected, suggesting that endothelial NNMT-derived MNA was not subsequently metabolized in the endothelium by aldehyde oxidase 1. Menadione induced a concentration-dependent decrease in endothelial viability as evidenced by a decrease in cell number that was associated with the upregulation of NNMT and SIRT1 expression in the nucleus in viable cells. The suppression of the NNMT activity either by NNMT inhibitors or shRNA-based silencing significantly decreased the endothelial cell viability in response to menadione. Furthermore, NNMT inhibition resulted in nuclear SIRT1 expression downregulation and upregulation of the phosphorylated form of SIRT1 on Ser47. In conclusion, our results suggest that the endothelial nuclear NNMT/SIRT1 pathway exerts a cytoprotective role that safeguards endothelial cell viability under oxidant stress insult.


Assuntos
Células Endoteliais/metabolismo , Endotélio/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Células Cultivadas , Células Endoteliais/patologia , Endotélio/patologia , Humanos , Estresse Oxidativo
17.
Biomolecules ; 11(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572571

RESUMO

A recently discovered bisubstrate inhibitor of Nicotinamide N-methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC50 value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor. The modification of the carboxylic acid into a range of esters in the absence or presence of a trimethyl-lock (TML) amine protecting group yielded a range of candidate prodrugs. Based on the stability in an aqueous buffer, and the confirmed esterase-dependent conversion to the parent compound, the isopropyl ester was selected as the preferred acid prodrug. The isopropyl ester and isopropyl ester-TML prodrugs exhibit improved cell permeability, which also translates to significantly enhanced cellular activity as established using assays designed to measure the enzymatic activity of NNMT in live cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Pró-Fármacos/farmacologia , Bioensaio , Soluções Tampão , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Nicotinamida N-Metiltransferase/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Especificidade por Substrato/efeitos dos fármacos
18.
RSC Chem Biol ; 2(5): 1546-1555, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704059

RESUMO

Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide to form 1-methylnicotinamide (MNA) using S-adenosyl-l-methionine (SAM) as the methyl donor. The complexity of the role of NNMT in healthy and disease states is slowly being elucidated and provides an indication that NNMT may be an interesting therapeutic target for a variety of diseases including cancer, diabetes, and obesity. Most inhibitors of NNMT described to date are structurally related to one or both of its substrates. In the search for structurally diverse NNMT inhibitors, an mRNA display screening technique was used to identify macrocyclic peptides which bind to NNMT. Several of the cyclic peptides identified in this manner show potent inhibition of NNMT with IC50 values as low as 229 nM. The peptides were also found to downregulate MNA production in cellular assays. Interestingly, substrate competition experiments reveal that these cyclic peptide inhibitors are noncompetitive with either SAM or NA indicating they may be the first allosteric inhibitors reported for NNMT.

19.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118681, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084444

RESUMO

Lipid droplets (LDs) play regulatory role in various cells but their significance in endothelial pathophysiology is still not well understood. Here, we studied LDs in in situ endothelial cells (ECs) in isolated blood vessels stimulated with pro-inflammatory or pro-apoptotic stimuli using Raman and fluorescence imaging. Endothelial inflammation induced by murine TNF-α (mTNF-α) was featured by overexpression of ICAM-1, vWF, increased production of PGI2, and was associated with the formation of low number of LDs. However in the presence of atglistatin, the inhibitor of triacyclglycerols hydrolysis, the number of LDs significantly increased. In contrast, in endothelium stimulated by human TNF-α (hTNF-α) or FasL, apart from endothelial inflammation, displayed also apoptosis as evidenced by high annexin expression and significant LDs formation. Raman imaging confirmed that LDs were localized in endothelium and revealed significant heterogeneity in biochemical composition of endothelial LDs that dependent on endothelial stimuli. Repertoire of LDs included LDs rich in highly unsaturated lipids, assigned to the inflammation, as well as LDs featured by more saturated lipids linked to apoptosis, where Raman signals indicating content of cholesterol and phospholipids were higher for endothelial apoptosis in comparison to endothelial inflammation. The heterogeneity in chemical composition of LDs suggested more complex pathophysiological role of endothelial LDs then previously appreciated.


Assuntos
Proteína Ligante Fas/farmacologia , Inflamação/metabolismo , Gotículas Lipídicas/química , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular , Camundongos , Compostos de Fenilureia/farmacologia , Prostaglandinas I/metabolismo , Análise Espectral Raman , Fator de von Willebrand/metabolismo
20.
Biochem Pharmacol ; 178: 114019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32389638

RESUMO

BACKGROUND: Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are effective substrates for NAD synthesis, which may act as vasoprotective agents. Here, we characterize the effects of NMN and NR on endothelial inflammation and dysfunction and test the involvement of CD73 in these effects. MATERIALS AND METHODS: The effect of NMN and NR on IL1ß- or TNFα-induced endothelial inflammation (ICAM1 and vWF expression), intracellular NAD concentration and NAD-related enzyme expression (NAMPT, CD38, CD73), were studied in HAECs. The effect of NMN and NR on angiotensin II-induced impairment of endothelium-dependent vasodilation was analyzed in murine aortic rings. The involvement of CD73 in NMN and NR effects was tested using CD73 inhibitor-AOPCP, or CD73-/- mice. RESULTS: 24 h-incubation with NMN and NR induced anti-inflammatory effects in HAEC stimulated by IL1ß or TNFα, as evidenced by a reduction in ICAM1 and vWF expression. Effects of exogenous NMN but not NR was abrogated in the presence of AOPCP, that efficiently inhibited extracellular endothelial conversion of NMN to NR, without a significant effect on the metabolism of NMN to NA. Surprisingly, intracellular NAD concentration increased in HAEC stimulated by IL1ß or TNFα and this effect was associated with upregulation of NAMPT and CD73, whereas changes in CD38 expression were less pronounced. NMN and NR further increased NAD in IL1ß-stimulated HAECs and AOPCP diminished NMN-induced increase in NAD, without an effect on NR-induced response. In ex vivo aortic rings stimulated with angiotensin II for 24 h, NO-dependent vasorelaxation induced by acetylcholine was impaired. NMN and NR, both prevented Ang II-induced endothelial dysfunction in the aorta. In aortic rings taken from CD73-/- mice NMN effect was lost, whereas NR effect was preserved. CONCLUSION: NMN and NR modulate intracellular NAD content in endothelium, inhibit endothelial inflammation and improve NO-dependent function by CD73-dependent and independent pathways, respectively. Extracellular conversion of NMN to NR by CD73 localized in the luminal surface of endothelial cells represent important vasoprotective mechanisms to maintain intracellular NAD.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo , 5'-Nucleotidase/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Compostos de Piridínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA