RESUMO
Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.
Assuntos
Eucariotos , Cadeia Alimentar , Microbiologia , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Biodiversidade , Ecologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Comportamento Predatório , Especificidade da EspécieRESUMO
Apicomplexa is a group of obligate intracellular parasites that includes the causative agents of human diseases such as malaria and toxoplasmosis. Apicomplexans evolved from free-living phototrophic ancestors, but how this transition to parasitism occurred remains unknown. One potential clue lies in coral reefs, of which environmental DNA surveys have uncovered several lineages of uncharacterized basally branching apicomplexans1,2. Reef-building corals have a well-studied symbiotic relationship with photosynthetic Symbiodiniaceae dinoflagellates (for example, Symbiodinium3), but the identification of other key microbial symbionts of corals has proven to be challenging4,5. Here we use community surveys, genomics and microscopy analyses to identify an apicomplexan lineage-which we informally name 'corallicolids'-that was found at a high prevalence (over 80% of samples, 70% of genera) across all major groups of corals. Corallicolids were the second most abundant coral-associated microeukaryotes after the Symbiodiniaceae, and are therefore core members of the coral microbiome. In situ fluorescence and electron microscopy confirmed that corallicolids live intracellularly within the tissues of the coral gastric cavity, and that they possess apicomplexan ultrastructural features. We sequenced the genome of the corallicolid plastid, which lacked all genes for photosystem proteins; this indicates that corallicolids probably contain a non-photosynthetic plastid (an apicoplast6). However, the corallicolid plastid differs from all other known apicoplasts because it retains the four ancestral genes that are involved in chlorophyll biosynthesis. Corallicolids thus share characteristics with both their parasitic and their free-living relatives, which suggests that they are evolutionary intermediates and implies the existence of a unique biochemistry during the transition from phototrophy to parasitism.
Assuntos
Antozoários/parasitologia , Apicomplexa/genética , Apicomplexa/metabolismo , Clorofila/biossíntese , Genes de Protozoários/genética , Filogenia , Animais , Apicomplexa/citologia , Recifes de Corais , Dinoflagellida/citologia , Dinoflagellida/genética , Dinoflagellida/metabolismo , Genoma de Protozoário/genética , Fotossíntese , Plastídeos/genética , SimbioseRESUMO
Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.
Assuntos
Plastídeos , Proteoma , Animais , Proteoma/genética , Plastídeos/genética , Filogenia , Fotossíntese/genética , Redes e Vias MetabólicasRESUMO
The Diphyllatea (CRuMs) are heterotrophic protists currently divided into three distinct clades (Diphy I-III). Diphy I are biflagellates in the genus Diphylleia, whereas Diphy II and III represent cryptic clades comprising Collodictyon-type quadriflagellates that were recently distinguished based on rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater lakes on two South Pacific islands and generated high-quality transcriptomes from species representing each clade, including the first transcriptomic data from Diphy III. Phylogenomic analyses support the separation of Diphy II and III, while transcriptome completeness highlights the utility of these data for future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea on these remote islands.
RESUMO
Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.
Assuntos
Isópteros , Parabasalídeos , Animais , Filogenia , América do SulRESUMO
Corals (Metazoa; Cnidaria; Anthozoa) have recently been shown to play host to a widespread and diverse group of intracellular symbionts of the phylum Apicomplexa. These symbionts, colloquially called "corallicolids", are mostly known through molecular analyses, and no formal taxonomy has been proposed. Another apicomplexan, Gemmocystis cylindrus (described from the coral Dendrogyra cylindrus), may be related to corallicolids, but lacks molecular data. Here, we isolate and describe motile trophozoite (feeding) corallicolids cells using microscopic (light, SEM, and TEM) and molecular phylogenetic analysis to provide the basis for a formal description. Phylogenetic analyses using nuclear and plastid rRNA operons, and three mitochondrial protein sequences derived from single cell transcriptomes, all confirm that these organisms fall into a discrete deep-branching clade within the Apicomplexa not closely related to any known species or major subgroup. As a result, we assign this clade to a new order, Corallicolida ord. nov., and family, Corallicolidae fam. nov. We describe a type species, Corallicola aquarius gen. nov. sp. nov. from its Rhodactis sp. host, and also describe a second species, Anthozoaphila gnarlus gen. nov. sp. nov., from the coral host Madracis mirabilis. Finally, we propose reassigning the incertae sedis taxon G. cylindrus from the order Agamococcidiorida to the Corallicolida, based on similarities in morphology and host localization to that of the corallicolids.
RESUMO
Apicomplexans are a group of obligate intracellular parasites, but their retention of a relict non-photosynthetic plastid reveals that they evolved from free-living photosynthetic ancestors. The closest relatives of apicomplexans include photosynthetic chromerid algae (e.g., Chromera and Vitrella), non-photosynthetic colpodellid predators (e.g., Colpodella) and several environmental clades collectively called Apicomplexan-Related Lineages (ARLs). Here we investigate the global distribution and inferred ecology of the ARLs by expansively searching for apicomplexan-related plastid small ribosomal subunit (SSU) genes in large-scale high-throughput bacterial amplicon surveys. Searching more than 220 million sequences from 224 geographical sites worldwide revealed 94 324 ARL plastid SSU sequences. Meta-analyses confirm that all ARLs are coral reef associated and not to marine environments generally, but only a subset is actually associated with coral itself. Most unexpectedly, Chromera was found exclusively in coral biogenous sediments, and not within coral tissue, indicating that it is not a coral symbiont, as typically thought. In contrast, ARL-V is the most diverse, geographically widespread and abundant of all ARL clades and is strictly associated with coral tissue and mucus. ARL-V was found in 19 coral species in reefs, including azooxanthellate corals at depths greater than 500 m. We suggest this is indicative of a parasitic or commensal relationship, and not of photosynthetic symbiosis, further underscoring the importance of isolating ARL-V and determining its relationship with the coral host.
Assuntos
Alveolados/fisiologia , Antozoários/parasitologia , Apicomplexa/classificação , Apicomplexa/fisiologia , Alveolados/genética , Animais , Biodiversidade , Recifes de Corais , Genes de Protozoários/genética , Genoma de Protozoário/genética , Sedimentos Geológicos , Interações Hospedeiro-Parasita , Plastídeos/genética , RNA Ribossômico 16S/genética , Subunidades Ribossômicas MenoresRESUMO
Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.
Assuntos
Sistema Digestório/microbiologia , Hypermastigia/classificação , Isópteros/microbiologia , Filogenia , Animais , Austrália , Composição de Bases , Equador , Hypermastigia/genética , Hypermastigia/isolamento & purificação , Peru , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , SimbioseRESUMO
Cilia are fundamental organelles of eukaryotes with diverse functions spanning from cell motility to sensory perception. A new study presenting genomes from parasitic horsehair worms reveals highly reduced genomes that have lost the molecular machinery needed to make cilia.
Assuntos
Cílios , Eucariotos , Animais , Movimento Celular , SensaçãoRESUMO
BACKGROUND: Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS: Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS: Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.
Assuntos
Organismos Aquáticos , Eucariotos , Animais , Organismos Aquáticos/microbiologia , Eucariotos/genética , Fungos/genética , Invertebrados/microbiologia , Filogenia , SimbioseRESUMO
Gregarines are an early-diverging lineage of apicomplexan parasites that hold many clues into the origin and evolution of the group, a remarkable transition from free-living phototrophic algae into obligate parasites of animals.1 Using single-cell transcriptomics targeting understudied lineages to complement available sequencing data, we characterized the mitochondrial metabolic repertoire across the tree of apicomplexans. In contrast to the large suite of proteins involved in aerobic respiration in well-studied parasites like Toxoplasma or Plasmodium,2 we find that gregarine trophozoites have significantly reduced energy metabolism: most lack respiratory complexes III and IV, and some lack the electron transport chains (ETCs) and tricarboxylic acid (TCA) cycle entirely. Phylogenomic analyses show that these reductions took place several times in parallel, resulting in a functional range from fully aerobic organelles to extremely reduced "mitosomes" restricted to Fe-S cluster biosynthesis. The mitochondrial genome has also been lost repeatedly: in species with severe functional reduction simply by gene loss but in one species with a complete ETC by relocating cox1 to the nuclear genome. Severe functional reduction of mitochondria is generally associated with structural reduction, resulting in small, nondescript mitochondrial-related organelles (MROs).3 By contrast, gregarines retain distinctive mitochondria with tubular cristae, even the most functionally reduced cases that also lack genes associated with cristae formation. Overall, the parallel, severe reduction of gregarine mitochondria expands the diversity of organisms that contain MROs and further emphasizes the role of parallel transitions in apicomplexan evolution.
Assuntos
Mitocôndrias/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Filogenia , Animais , Metabolismo Energético , Genoma Mitocondrial , Mitocôndrias/genética , Parasitos/genética , ToxoplasmaRESUMO
Snow and ice present challenging substrates for cellular growth, yet microbial snow communities not only exist, but are diverse and ecologically impactful. These communities are dominated by green algae, but additional organisms, such as fungi, are also abundant and may be important for nutrient cycling, syntrophic interactions, and community structure in general. However, little is known about these non-algal community members, including their taxonomic affiliations. An example of this is Chionaster nivalis, a unicellular fungus that is morphologically enigmatic and frequently observed in snow communities globally. Despite being described over one hundred years ago, the phylogeny and higher-level taxonomic classifications of C. nivalis remain unknown. Here, we isolated and sequenced the internal transcribed spacer (ITS) and the D1-D2 region of the large subunit ribosomal RNA gene of C. nivalis, providing a molecular barcode for future studies. Phylogenetic analyses using the ITS and D1-D2 region revealed that C. nivalis is part of a novel lineage in the class Tremellomycetes (Basidiomycota, Agaricomycotina) for which a new order Chionasterales ord. nov. (MB838717) and family Chionasteraceae fam. nov. (MB838718) are proposed. Comparisons between C. nivalis and sequences generated from environmental surveys revealed that the Chionasterales are globally distributed and probably psychrophilic, as they appear to be limited to the high alpine and arctic regions. These results highlight the unexplored diversity that exists within these extreme habitats and emphasize the utility of single-cell approaches in characterizing these complex algal-dominated communities.
Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Ecossistema , Genes Fúngicos , RNA Fúngico/genética , RNA Ribossômico/genética , Regiões Árticas , Sequência de Bases , Técnicas de Tipagem Micológica/métodos , Filogenia , Neve/microbiologia , Óperon de RNArRESUMO
The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of nonphotosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution. Here, we sequenced the transcriptomes and apicoplast genomes of three deep-branching apicomplexans, Margolisiella islandica, Aggregata octopiana, and Merocystis kathae. Phylogenomic analyses show that these taxa, together with Rhytidocystis, form a new lineage of apicomplexans that is sister to the Coccidia and Hematozoa (the lineages including most medically significant taxa). Members of this clade retain plastid genomes and the canonical apicomplexan plastid metabolism. However, the apicoplast genomes of Margolisiella and Rhytidocystis are the most reduced of any apicoplast, are extremely GC-poor, and have even lost genes for the canonical plastidial RNA polymerase. This new lineage of apicomplexans, for which we propose the class Marosporida class nov., occupies a key intermediate position in the apicomplexan phylogeny, and adds a new complexity to the models of stepwise reductive evolution of genome structure and organelle function in these parasites.
Assuntos
Apicomplexa/classificação , Apicomplexa/genética , Apicoplastos/genética , Tamanho do Genoma , Animais , Vias Biossintéticas/genética , Coccídios/genética , RNA Polimerases Dirigidas por DNA/genética , Eimeriidae/genética , Evolução Molecular , Invertebrados/parasitologia , Filogenia , Proteínas de Protozoários/classificação , Transcrição GênicaRESUMO
DNA replication is a ubiquitous and conserved cellular process. However, regulation of DNA replication is only understood in a small fraction of organisms that poorly represent the diversity of genetic systems in nature. Here we used computational and experimental approaches to examine the function and evolution of one such system, the replication band (RB) in spirotrich ciliates, which is a localized, motile hub that traverses the macronucleus while replicating DNA. We show that the RB can take unique forms in different species, from polar bands to a "replication envelope," where replication initiates at the nuclear periphery before advancing inward. Furthermore, we identify genes involved in cellular transport, including calcium transporters and cytoskeletal regulators, that are associated with the RB and may be involved in its function and translocation. These findings highlight the evolution and diversity of DNA replication systems and provide insights into the regulation of nuclear organization and processes.
Assuntos
Evolução Biológica , Cilióforos/genética , Replicação do DNA , DNA/metabolismo , Macronúcleo/genética , Cálcio/metabolismo , Cilióforos/citologia , Cilióforos/metabolismo , Citoesqueleto/metabolismo , Macronúcleo/metabolismo , FilogeniaRESUMO
Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.
Assuntos
Isópteros , Parabasalídeos , Simbiose , Animais , Parabasalídeos/classificação , Parabasalídeos/fisiologiaRESUMO
The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
Assuntos
Eucariotos/genética , Plastídeos/genética , Rodófitas/genética , Evolução Biológica , Eucariotos/classificação , Variação Genética , Genoma/genética , Genômica , Filogenia , Rodófitas/classificação , Análise de Célula ÚnicaRESUMO
The apicomplexans are a group of obligate animal pathogens that include Plasmodium (malaria), Toxoplasma (toxoplasmosis), and Cryptosporidium (cryptosporidiosis) [1]. They are an extremely diverse and specious group but are nevertheless united by a distinctive suite of cytoskeletal and secretory structures related to infection, called the apical complex, which is used to recognize and gain entry into animal host cells. The apicomplexans are also known to have evolved from free-living photosynthetic ancestors and retain a relict plastid (the apicoplast), which is non-photosynthetic but houses a number of other essential metabolic pathways [2]. Their closest relatives include a mix of both photosynthetic algae (chromerids) and non-photosynthetic microbial predators (colpodellids) [3]. Genomic analyses of these free-living relatives have revealed a great deal about how the alga-parasite transition may have taken place, as well as origins of parasitism more generally [4]. Here, we show that, despite the surprisingly complex origin of apicomplexans from algae, this transition actually occurred at least three times independently. Using single-cell genomics and transcriptomics from diverse uncultivated parasites, we find that two genera previously classified within the Apicomplexa, Piridium and Platyproteum, form separately branching lineages in phylogenomic analyses. Both retain cryptic plastids with genomic and metabolic features convergent with apicomplexans. These findings suggest a predilection in this lineage for both the convergent loss of photosynthesis and transition to parasitism, resulting in multiple lineages of superficially similar animal parasites.
Assuntos
Apicomplexa/classificação , Evolução Biológica , Animais , Apicoplastos/classificação , Parasitos/classificação , FilogeniaRESUMO
Pseudotrichonympha is a large and structurally complex genus of parabasalian protists that play a key role in the digestion of lignocellulose in the termite hindgut. Like many termite symbionts, it has a conspicuous body plan that makes genus-level identification relatively easy, but species-level diversity of Pseudotrichonympha is understudied. Molecular surveys have suggested the diversity is much greater than the current number of described species, and that many "species" described in multiple hosts are in fact different, but gene sequences from formally described species remain a rarity. Here we describe three new species from Coptotermes and Prorhinotermes hosts, including small subunit ribosomal RNA (SSU rRNA) sequences from single cells. Based on host identification by morphology and DNA barcoding, as well as the morphology and phylogenetic position of each symbiont, all three represent new Pseudotrichonympha species: P. leei, P. lifesoni, and P. pearti. Pseudotrichonympha leei and P. lifesoni, both from Coptotermes, are closely related to other Coptotermes symbionts including the type species, P. hertwigi. Pseudotrichonympha pearti is the outlier of the trio, more distantly related to P. leei and P. lifesoni than they are to one another, and contains unique features, including an unusual rotating intracellular structure of unknown function.