Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Cell Rep ; 41(4): 979-993, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35226115

RESUMO

KEY MESSAGE: Lower ethylene production in sugarcane results in plants with higher stature, expression of growth-promoting genes, higher photosynthetic rate, and increased antioxidant compounds. The hormone ethylene is involved in critical processes in sugarcane, such as the growth and accumulation of sucrose. The lack of mutants for ethylene biosynthesis or signaling genes makes it difficult to understand the role of this phytohormone throughout sugarcane development. This study aimed to evaluate the physiology and development of sugarcane plants with low ethylene production. To achieve this goal, we used RNA interference to silence three genes, ScACS1, ScACS2, and ScACS3, encoding 1-aminocyclopropane-1-carboxylic acid synthases (ACS), responsible for a limiting step of the ethylene biosynthesis pathway. Sugarcane plants with reduced ethylene levels presented increased growth, faster germination of lateral gems, and activation of non-enzymatic antioxidant mechanisms. We observed an augmentation in the expression of ScACO5, which encodes the final enzyme regulating ethylene biosynthesis, and ScERF1, encoding a transcription factor, linked to the ethylene response. The increase in plant height was correlated with higher expression of ScPIF3, ScPIF4, and ScPIF5, which encode for transcription factors related to growth induction. Interestingly, there was also an increase in the expression of the ScGAI gene, which encodes a DELLA protein, a growth repressor. The final content of sucrose in the stems was not affected by the low levels of ethylene, although the rate of CO2 assimilation was reduced. This study reports for the first time the impacts of low endogenous production of ethylene in sugarcane and provides helpful insights on the molecular mechanisms behind ethylene responses.


Assuntos
Saccharum , Antioxidantes/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Saccharum/genética , Saccharum/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Genet Mol Biol ; 41(2): 450-454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30088611

RESUMO

The successful development of genetically engineered monocots using Agrobacterium-mediated transformation has created an increasing demand for compatible vectors. We have developed a new expression vector, pGVG, for efficient transformation and expression of different constructs for gene overexpression and silencing in sugarcane. The pCAMBIA2300 binary vector was modified by adding Gateway recombination sites for fast gene transfer between vectors and the maize polyubiquitin promoter Ubi-1 (ZmUbi1), which is known to drive high gene expression levels in monocots. Transformation efficiency using the pGVG vector reached up to 14 transgenic events per gram of transformed callus. Transgenic plants expressing the ß-glucuronidase (GUS) reporter gene from pGVG showed high levels of GUS activity. qRT-PCR evaluations demonstrated success for both overexpression and hairpin-based silencing cassettes. Therefore, pGVG is suitable for plant transformation and subsequent applications for high-throughput production of stable transgenic sugarcane. The use of an expression cassette based on the ZmUbi1 promoter opens the possibility of using pGVG in other monocot species.

3.
BMC Plant Biol ; 15: 300, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714767

RESUMO

BACKGROUND: Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. RESULTS: Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. CONCLUSION: This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Saccharum/crescimento & desenvolvimento , Saccharum/genética , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
4.
Mol Biol Rep ; 41(12): 8107-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205121

RESUMO

Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress.


Assuntos
Alumínio/toxicidade , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Zea mays/crescimento & desenvolvimento , Poluição Ambiental/efeitos adversos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Estresse Fisiológico , Zea mays/efeitos dos fármacos , Zea mays/genética
5.
Front Plant Sci ; 13: 868027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712599

RESUMO

The prokaryote-derived Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas mediated gene editing tools have revolutionized our ability to precisely manipulate specific genome sequences in plants and animals. The simplicity, precision, affordability, and robustness of this technology have allowed a myriad of genomes from a diverse group of plant species to be successfully edited. Even though CRISPR/Cas, base editing, and prime editing technologies have been rapidly adopted and implemented in plants, their editing efficiency rate and specificity varies greatly. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9-derived technologies and their implications on enhancing editing efficiency. We highlight the major efforts of engineering Cas9, Cas12a, Cas12b, and Cas12f proteins aiming to improve their efficiencies. We also provide a perspective on the global future of agriculturally based products using DNA-free CRISPR/Cas techniques. The improvement of CRISPR-based technologies efficiency will enable the implementation of genome editing tools in a variety of crop plants, as well as accelerate progress in basic research and molecular breeding.

6.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433570

RESUMO

Europe's prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of "steppe" ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.

7.
BMC Plant Biol ; 10: 196, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20828383

RESUMO

BACKGROUND: Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. RESULTS: When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. CONCLUSIONS: This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil.


Assuntos
Alumínio/farmacologia , Perfilação da Expressão Gênica , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/genética , Ácidos/química , Regulação da Expressão Gênica de Plantas , Genótipo , Hidroponia , Raízes de Plantas/genética , Solo/análise , Zea mays/crescimento & desenvolvimento
8.
Sci Rep ; 8(1): 2327, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396510

RESUMO

Nitrogen (N) is a major component of the photosynthetic apparatus and is widely used as a fertilizer in crops. However, to the best of our knowledge, the dynamic of photosynthesis establishment due to differential N supply in the bioenergy crop sugarcane has not been reported to date. To address this question, we evaluated physiological and metabolic alterations along the sugarcane leaf in two contrasting genotypes, responsive (R) and nonresponsive (NR), grown under high- and low-N conditions. We found that the N supply and the responsiveness of the genotype determined the degree of senescence, the carboxylation process mediated by phosphoenolpyruvate carboxylase (PEPcase) and differential accumulation of soluble sugars. The metabolite profiles indicated that the NR genotype had a higher respiration rate in the youngest tissues after exposure to high N. We observed elevated levels of metabolites related to photosynthesis in almost all leaf segments from the R genotype under high-N conditions, suggesting that N supply and the ability to respond to N influenced photosynthesis. Therefore, we observed that N influence on photosynthesis and other pathways is dependent on the genotype and the leaf region.


Assuntos
Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Saccharum/metabolismo , Respiração Celular , Genótipo , Folhas de Planta/crescimento & desenvolvimento , Saccharum/genética , Saccharum/crescimento & desenvolvimento
9.
F1000Res ; 6: 861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713559

RESUMO

Sugarcane commercial cultivar SP80-3280 has been used as a model for genomic analyses in Brazil. Here we present a draft genome sequence employing Illumina TruSeq Synthetic Long reads. The dataset is available from NCBI BioProject with accession PRJNA272769.

10.
Front Plant Sci ; 8: 1077, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690620

RESUMO

Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.

11.
Plant Sci ; 191-192: 8-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22682560

RESUMO

The presence of aluminum (Al) is one of the main factors limiting crop yield in Brazil and worldwide. Plant responses to Al are complex, and the use of techniques such as microarrays can facilitate their comprehension. In a previous work, we evaluated the transcriptome of two maize lines, Cat100-6 and S1587-17, after growing the plants for 1 or 3 days in acid soil (pH 4.1) or alkaline soil with Ca(OH)2 (pH 5.5), and we identified genes that likely contribute to Al tolerance. The mapping of these genes to the chromosomes allowed the identification of the genes that are localized in maize QTLs previously reported in the literature as associated with the tolerant phenotype. We were able to map genes encoding proteins possibly involved with acid soil tolerance, such as the ones encoding an RNA binding protein, a protease inhibitor, replication factors, xyloglucan endotransglycosylase and cyclins, inside QTLs known to be important for the Al-tolerant phenotype.


Assuntos
Adaptação Fisiológica/genética , Alumínio/toxicidade , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Locos de Características Quantitativas/genética , Zea mays/genética , Zea mays/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marcadores Genéticos , Zea mays/efeitos dos fármacos
12.
PLoS One ; 6(8): e23776, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912606

RESUMO

BACKGROUND: Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. CONCLUSIONS/SIGNIFICANCE: Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secas , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Nicotiana/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Germinação/genética , Fenótipo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiologia , Proteína Desacopladora 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA