RESUMO
Left ventricular hypertrophy (LVH) caused by chronic pressure overload with subsequent pathological remodeling is a major cardiovascular risk factor for heart failure and mortality. The role of deubiquitinases in LVH has not been well-characterized. To define if the deubiquitinase ubiquitin-specific peptidase 20 (USP20) regulates LVH, we subjected USP20 knockout (KO) and cognate wild type (WT) mice to chronic pressure overload by transverse aortic constriction (TAC) and measured changes in cardiac function by serial echocardiography followed by histological and biochemical evaluations. USP20-KO mice showed severe deterioration of systolic function within 4-weeks of TAC compared to WT cohorts. Both USP20-TAC and WT-TAC cohorts presented cardiac hypertrophy following pressure overload. However, USP20-KO-TAC mice showed an increase in cardiomyocyte length and developed maladaptive eccentric hypertrophy, a phenotype generally observed with volume-overload states and decompensated heart failure. In contrast, WT-TAC mice displayed increase in cardiomyocyte width, producing concentric remodeling that is characteristic of pressure overload. In addition, cardiomyocyte apoptosis, interstitial fibrosis and mouse mortality were augmented in USP20-KO-TAC compared to WT-TAC mice. Quantitative mass spectrometry of LV tissue revealed that the expression of sarcomeric myosin heavy chain 7 (MYH7), a fetal gene normally upregulated during cardiac remodeling was significantly reduced in USP20-KO after TAC. Mechanistically, we identified increased degradative lysine-48 polyubiquitination of MYH7 in USP20-KO hearts indicating that USP20-mediated deubiquitination likely prevents protein degradation of MYH7 during pressure overload. Our findings suggest that USP20-dependent signaling pathways regulate the layering pattern of sarcomeres to suppress maladaptive remodeling during chronic pressure overload and prevent cardiac failure.
RESUMO
It is widely accepted that molecular reductionist views of highly complex human physiologic activity, e.g., the aging process, as well as therapeutic drug efficacy are largely oversimplifications. Currently some of the most effective appreciation of biologic disease and drug response complexity is achieved using high-dimensionality (H-D) data streams from transcriptomic, proteomic, metabolomics, or epigenomic pipelines. Multiple H-D data sets are now common and freely accessible for complex diseases such as metabolic syndrome, cardiovascular disease, and neurodegenerative conditions such as Alzheimer's disease. Over the last decade our ability to interrogate these high-dimensionality data streams has been profoundly enhanced through the development and implementation of highly effective bioinformatic platforms. Employing these computational approaches to understand the complexity of age-related diseases provides a facile mechanism to then synergize this pathologic appreciation with a similar level of understanding of therapeutic-mediated signaling. For informative pathology and drug-based analytics that are able to generate meaningful therapeutic insight across diverse data streams, novel informatics processes such as latent semantic indexing and topological data analyses will likely be important. Elucidation of H-D molecular disease signatures from diverse data streams will likely generate and refine new therapeutic strategies that will be designed with a cognizance of a realistic appreciation of the complexity of human age-related disease and drug effects. We contend that informatic platforms should be synergistic with more advanced chemical/drug and phenotypic cellular/tissue-based analytical predictive models to assist in either de novo drug prioritization or effective repurposing for the intervention of aging-related diseases. SIGNIFICANCE STATEMENT: All diseases, as well as pharmacological mechanisms, are far more complex than previously thought a decade ago. With the advent of commonplace access to technologies that produce large volumes of high-dimensionality data (e.g., transcriptomics, proteomics, metabolomics), it is now imperative that effective tools to appreciate this highly nuanced data are developed. Being able to appreciate the subtleties of high-dimensionality data will allow molecular pharmacologists to develop the most effective multidimensional therapeutics with effectively engineered efficacy profiles.
Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Interpretação Estatística de Dados , Síndrome Metabólica/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Farmacologia/métodos , Animais , Biologia Computacional , Humanos , Análise de Componente PrincipalRESUMO
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Assuntos
Proteômica , Transdução de Sinais , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento/genética , Senescência Celular , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neurotransmissores/metabolismoRESUMO
Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.
Assuntos
Calcinose , Calcificação Vascular , Ratos , Animais , Varfarina , Reação de Fase Aguda , Proteômica , Fosfatase Alcalina/metabolismo , Calcinose/metabolismo , Calcificação Vascular/patologiaRESUMO
Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.
Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Memória , Animais Geneticamente Modificados , Modelos Animais de DoençasRESUMO
Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD. Rats with adenine-induced CKD were assigned to different treatment groups to receive either 200 mg/kg metformin, four or five weeks after the start of the adenine diet (established mild-moderate CKD), or 25 mg/kg canagliflozin four weeks after the start of the diet, by daily oral gavage administered during four weeks. Each treatment group was compared to a vehicle group. Chronic adenine dosing resulted in severe CKD in vehicle-treated rats as indicated by a marked rise in serum creatinine levels, a marked decrease in creatinine clearance, and a disturbed mineral metabolism. Metformin, but not canagliflozin, halted functional kidney decline. Additionally, kidneys of metformin-treated animals showed less interstitial area and inflammation as compared to the vehicle group. Proteomic analyses revealed that metformin's kidney-protective effect was associated with the activation of the Hippo signaling pathway, a highly conserved multiprotein kinase cascade that controls tissue development, organ size, cell proliferation, and apoptosis. Thus, metformin demonstrated therapeutic efficacy by halting the progression of established CKD in a rat model.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Metformina , Insuficiência Renal Crônica , Adenina/efeitos adversos , Animais , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Proteômica , Ratos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológicoRESUMO
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Assuntos
Fenômenos Fisiológicos , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Envelhecimento , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neurotransmissores/metabolismoRESUMO
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Assuntos
Relaxina , Ansiedade , Apetite , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/genética , Relaxina/metabolismo , Transdução de Sinais/fisiologiaRESUMO
With the rapidly expanding catalogue of scientific publications, especially within the Biomedical Sciences field, it is becoming increasingly difficult for researchers to search for, read or even interpret emerging scientific findings. PubMed, just one of the current biomedical data repositories, comprises over 33 million citations for biomedical research, and over 2500 publications are added each day. To further strengthen the impact biomedical research, we suggest that there should be more synergy between publications and machines. By bringing machines into the realm of research and publication, we can greatly augment the assessment, investigation and cataloging of the biomedical literary corpus. The effective application of machine-based manuscript assessment and interpretation is now crucial, and potentially stands as the most effective way for researchers to comprehend and process the tsunami of biomedical data and literature. Many biomedical manuscripts are currently published online in poorly searchable document types, with figures and data presented in formats that are partially inaccessible to machine-based approaches. The structure and format of biomedical manuscripts should be adapted to facilitate machine-assisted interrogation of this important literary corpus. In this context, it is important to embrace the concept that biomedical scientists should also write manuscripts that can be read by machines. It is likely that an enhanced human-machine synergy in reading biomedical publications will greatly enhance biomedical data retrieval and reveal novel insights into complex datasets.
Assuntos
Pesquisa Biomédica , Armazenamento e Recuperação da Informação , Humanos , PublicaçõesRESUMO
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/metabolismo , Doença , Humanos , Ligantes , Patologia , Mapas de Interação de Proteínas/fisiologia , Receptores de Superfície Celular/metabolismoRESUMO
Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation. AMC development, which was induced in mice by dietary warfarin administration, was proved by positive Von Kossa staining and a significantly increased calcium content in the aorta compared to that of control mice. The ex vivo organ bath set-up showed calcified aortic segments to be significantly more sensitive to phenylephrine induced contraction, compared to control segments. This, together with the fact that calcified segments as compared to control segments, showed a significantly smaller contraction in the absence of extracellular calcium, argues for a reduced basal NO production in the calcified segments. Moreover, proteomic data revealed a reduced eNOS activation to be part of the vascular calcification process. In summary, this study identifies a poor endothelial function, next to classic pro-calcifying stimuli, as a possible initiator of arterial calcification.
Assuntos
Células Endoteliais/patologia , Túnica Média/efeitos dos fármacos , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia , Varfarina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteogênese/efeitos dos fármacos , Túnica Média/metabolismo , Túnica Média/patologia , Calcificação Vascular/metabolismoRESUMO
INTRODUCTION: Current diagnoses in psychiatry are solely based on the evaluation of clinical presentation by the treating psychiatrist. This results in a high percentage of misdiagnosis and consequential inefficient treatment; especially regarding major depressive disorder (MDD), depression in the context of bipolar disorder (BD-D), bipolar disorder with manic symptoms (BD-M), and psychosis in the context of schizophrenia (SZ). Objective biomarkers allowing for accurate discriminatory diagnostics are therefore urgently needed. METHODS: Peripheral blood mononuclear cell (PBMC) proteomes of patients with MDD (n = 5) , BD-D (n = 3), BD-M (n = 4), and SZ (n = 4), and also of healthy controls (HC; n = 6) were analyzed by state-of-the-art mass spectrometry. Proteins with a differential expression of a >2 standard deviation (SD) expression fold change from that of the HC and between either MDD versus BD-D or BD-M versus SZ were subsequently identified as potential discriminatory biomarkers. RESULTS: In total, 4,271 individual proteins were retrieved from the HC. Of these, about 2,800 were detected in all patient and HC samples. For objective discrimination between MDD and BD-D, 66 candidate biomarkers were found. In parallel, 72 proteins might harbor a biomarker capacity for differential diagnostics of BD-M and SZ. A single biomarker was contraregulated versus HC in each pair of comparisons. DISCUSSION: With this work, we provide a register of candidate biomarkers with the potential to objectively discriminate MDD from BD-D, and BD-M from SZ. Although concerning a proof-of-concept study with limited sample size, these data provide a stepping-stone for follow-up research on the validation of the true discriminatory potential and feasibility of clinical implementation of the discovered biomarker candidates.
Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/metabolismo , Leucócitos Mononucleares/metabolismo , Proteoma/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Adolescente , Adulto , Biomarcadores/sangue , Transtorno Bipolar/sangue , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Esquizofrenia/sangue , Adulto JovemRESUMO
BACKGROUND: Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported. METHODS: To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure). We also performed unbiased proteomic analyses of arterial samples coupled to functional bioinformatic annotation analyses to investigate molecular signaling events associated with toxin-mediated arterial calcification. RESULTS: Long-term exposure to either toxin at serum levels similar to those experienced by patients with CKD significantly increased calcification in the aorta and peripheral arteries. Our analyses revealed an association between calcification events, acute-phase response signaling, and coagulation and glucometabolic signaling pathways, whereas escape from toxin-induced calcification was linked with liver X receptors and farnesoid X/liver X receptor signaling pathways. Additional metabolic linkage to these pathways revealed that IS and PCS exposure engendered a prodiabetic state evidenced by elevated resting glucose and reduced GLUT1 expression. Short-term exposure to IS and PCS (before calcification had been established) showed activation of inflammation and coagulation signaling pathways in the aorta, demonstrating that these signaling pathways are causally implicated in toxin-induced arterial calcification. CONCLUSIONS: In CKD, both IS and PCS directly promote vascular calcification via activation of inflammation and coagulation pathways and were strongly associated with impaired glucose homeostasis.
Assuntos
Carbamatos/efeitos adversos , Intolerância à Glucose/fisiopatologia , Indicã/efeitos adversos , Poliésteres/efeitos adversos , Insuficiência Renal Crônica/patologia , Calcificação Vascular/induzido quimicamente , Animais , Produtos Biológicos/farmacologia , Biópsia por Agulha , Carbamatos/farmacologia , Modelos Animais de Doenças , Imuno-Histoquímica , Indicã/farmacologia , Masculino , Metformina/farmacologia , Poliésteres/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologiaRESUMO
The intrinsically disordered protein α-synuclein plays a major role in Parkinson's disease. The protein can oligomerize resulting in the formation of various aggregated species in neuronal cells, leading to neurodegeneration. The interaction of α-synuclein with biological cell membranes plays an important role for specific functions of α-synuclein monomers, e.g., in neurotransmitter release. Using different types of detergents to mimic lipid molecules present in biological membranes, including the presence of Ca2+ ions as an important structural factor, we aimed to gain an understanding of how α-synuclein interacts with membrane models and how this affects the protein conformation and potential oligomerization. We investigated detergent binding stoichiometry, affinity and conformational changes of α-synuclein taking detergent concentration, different detergent structures and charges into account. With native nano-electrospray ionization ion mobility-mass spectrometry, we were able to detect unique conformational patterns resulting from binding of specific detergents to α-synuclein. Our data demonstrate that α-synuclein monomers can interact with detergent molecules irrespective of their charge, that protein-micelle interactions occur and that micelle properties are an important factor.
Assuntos
Detergentes/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Nanotecnologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Espectrometria de Massas por Ionização por Electrospray , alfa-Sinucleína/efeitos dos fármacosRESUMO
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.
Assuntos
Comportamento Animal , Espinhas Dendríticas/metabolismo , Aprendizagem , Memória , Neuritos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Comportamento Social , Animais , Espinhas Dendríticas/patologia , Camundongos , Camundongos Knockout , Neuritos/patologiaRESUMO
BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Genótipo , Guanidinoacetato N-Metiltransferase/genética , Mutação , Profilinas/genética , Adulto , Idoso , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Proteômica , Adulto JovemRESUMO
Biomedical data sets are becoming increasingly larger and a plethora of high-dimensionality data sets ("Big Data") are now freely accessible for neurodegenerative diseases, such as Alzheimer's disease. It is thus important that new informatic analysis platforms are developed that allow the organization and interrogation of Big Data resources into a rational and actionable mechanism for advanced therapeutic development. This will entail the generation of systems and tools that allow the cross-platform correlation between data sets of distinct types, for example, transcriptomic, proteomic, and metabolomic. Here, we provide a comprehensive overview of the latest strategies, including latent semantic analytics, topological data investigation, and deep learning techniques that will drive the future development of diagnostic and therapeutic applications for Alzheimer's disease. We contend that diverse informatic "Big Data" platforms should be synergistically designed with more advanced chemical/drug and cellular/tissue-based phenotypic analytical predictive models to assist in either de novo drug design or effective drug repurposing.
Assuntos
Big Data , Mineração de Dados/métodos , Doenças Neurodegenerativas/terapia , Genômica , Humanos , Metabolômica , ProteômicaRESUMO
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Assuntos
Dano ao DNA , Reparo do DNA , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Metabolismo Energético/fisiologia , Humanos , Mapas de Interação de Proteínas/fisiologiaRESUMO
The neuregulin-1 (NRG-1)/receptor tyrosine-protein kinase erbB (ErbB) system is an endothelium-controlled paracrine system modulating cardiac performance and adaptation. Recent studies have indicated that NRG-1 has antifibrotic effects in the left ventricle, which were explained by direct actions on cardiac fibroblasts. However, the NRG-1/ErbB system also regulates the function of macrophages. In this study, we hypothesized that the antifibrotic effect of NRG-1 in the heart is at least partially mediated through inhibitory effects on macrophages. We also hypothesized that the antifibrotic effect of NRG-1 may be active in other organs, such as the skin and lung. First, in a mouse model of angiotensin II (ANG II)-induced myocardial hypertrophy and fibrosis, NRG-1 treatment (20 µg·kg-1·day-1 ip) significantly attenuated myocardial hypertrophy and fibrosis and improved passive ventricular stiffness (4 wk). Interestingly, 1 wk after exposure to ANG II, NRG-1 already attenuated myocardial macrophage infiltration and cytokine expression. Furthermore, mice with myeloid-specific deletion of the ErbB4 gene (ErbB4F/FLysM-Cre+/-) showed an intensified myocardial fibrotic response to ANG II. Consistently, NRG-1 activated the ErbB4 receptor in isolated macrophages, inhibited phosphatidylinositide 3-kinase/Akt and STAT3 signaling pathways, and reduced the release of inflammatory cytokines. Further experiments showed that the antifibrotic and anti-inflammatory effects of NRG-1 were reproducible in mouse models of bleomycin-induced dermal and pulmonary fibrosis. Overall, this study demonstrates that the antifibrotic effect of NRG-1 in the heart is linked to anti-inflammatory activity NRG-1/ErbB4 signaling in macrophages. Second, this study shows that NRG-1 has antifibrotic and anti-inflammatory effects in organs other than the heart, such as the skin and lung.NEW & NOTEWORTHY Our study contributes to the understanding of the antifibrotic effect of neuregulin-1 during myocardial remodeling. Here, we show that the antifibrotic effect of neuregulin-1 is at least partially mediated through anti-inflammatory activity, linked to receptor tyrosine-protein kinase erbB-4 activation in macrophages. Furthermore, we show that this effect is also present outside the heart.
Assuntos
Macrófagos/metabolismo , Miocárdio/patologia , Neuregulina-1/metabolismo , Fibrose Pulmonar/patologia , Receptor ErbB-4/metabolismo , Transdução de Sinais , Pele/patologia , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Ecocardiografia , Fibrose , Coração/diagnóstico por imagem , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/patologia , Miócitos Cardíacos/patologia , Fibrose Pulmonar/diagnóstico por imagem , Pele/diagnóstico por imagemRESUMO
Ligands possessing different physico-chemical structures productively interact with G protein-coupled receptors generating distinct downstream signaling events due to their abilities to activate/select idiosyncratic receptor entities ('receptorsomes') from the full spectrum of potential receptor partners. We have employed multiple novel informatic approaches to identify and characterize the in vivo transcriptomic signature of an arrestin-signaling biased ligand, [D-Trp(12),Tyr(34)]-bPTH(7-34), acting at the parathyroid hormone type 1 receptor (PTH1R), across six different murine tissues after chronic drug exposure. We are able to demonstrate that [D-Trp(12),Tyr(34)]-bPTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated, in an arrestin signaling-dependent manner, across more tissues than that of the pluripotent endogenous PTH1R ligand, hPTH(1-34). This arrestin-focused response signature is strongly linked with the transcriptional regulation of cell growth and development. Our informatic deconvolution of a conserved arrestin-dependent transcriptomic signature from wild type mice demonstrates a conceptual framework within which the in vivo outcomes of biased receptor signaling may be further investigated or predicted.