Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 621(7978): 324-329, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648851

RESUMO

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Assuntos
Biomassa , Calor Extremo , Peixes , Animais , Europa (Continente) , Pesqueiros/estatística & dados numéricos , Peixes/classificação , Peixes/fisiologia , Calor Extremo/efeitos adversos , América do Norte , Biodiversidade
2.
Glob Chang Biol ; 27(2): 220-236, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067925

RESUMO

Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.


Assuntos
Ecossistema , Pesqueiros , Animais , Mudança Climática , Peixes , Inquéritos e Questionários
3.
Glob Chang Biol ; 26(3): 1306-1318, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31802576

RESUMO

Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life-history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the 'no effective mitigation' representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.


Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Biomassa , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
4.
J Anim Ecol ; 89(6): 1497-1510, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162299

RESUMO

The concept of biodiversity-ecosystem functioning (BEF) has been studied over the last three decades using experiments, theoretical models and more recently observational data. While theoretical models revealed that species richness is the best metric summarizing ecosystem functioning, it is clear that ecosystem function is explained by other variables besides species richness. Additionally, theoretical models rarely focus on more than one ecosystem function, limiting ecosystem functioning to biomass or production. There is a lack of theoretical background to verify how other components of biodiversity and species interactions support ecosystem functioning. Here, using simulations from a food web model based on a community assembly process and a trait-based approach, we test how species biodiversity, food web structure and predator-prey interactions determine several ecosystem functions (biomass, metabolism, production and productivity). Our results demonstrate that the relationship between species richness and ecosystem functioning depends on the type of ecosystem function considered and the importance of diversity and food web structure differs across functions. Particularly, we show that dominance plays a major role in determining the level of biomass, and it is at least as important as the number of species. We find that dominance occurs in the food web when species do not experience strong predation. By manipulating the structure of the food web, we show that species using a wider trait space (generalist communities) result in more connected food webs and generally reach the same level of functioning with less species. The model shows the importance of generalist versus specialist communities on BEF relationships, and as such, empirical studies should focus on quantifying the importance of diet/habitat use on ecosystem functioning. Our study provides a better understanding of BEF underlying mechanisms and generates research hypotheses that can be considered and tested in observational studies. We recommend that studies investigating links between biodiversity and ecosystem functions should include metrics of dominance, species composition, trophic structure and possibly environmental trait space. We also advise that more effort should be made into calculating several ecosystem functions and properties with data from natural multitrophic systems.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biodiversidade , Biomassa , Comportamento Predatório
5.
Proc Biol Sci ; 286(1906): 20191189, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288699

RESUMO

The relationship between biodiversity and ecosystem functioning (BEF) is a topic of considerable interest to scientists and managers because a better understanding of its underlying mechanisms may help us mitigate the consequences of biodiversity loss on ecosystems. Our current knowledge of BEF relies heavily on theoretical and experimental studies, typically conducted on a narrow range of spatio-temporal scales, environmental conditions, and trophic levels. Hence, whether a relationship holds in the natural environment is poorly understood, especially in exploited marine ecosystems. Using large-scale observations of marine fish communities, we applied a structural equation modelling framework to investigate the existence and significance of BEF relationships across northwestern European seas. We find that ecosystem functioning, here represented by spatial patterns in total fish biomass, is unrelated to species richness-the most commonly used diversity metric in BEF studies. Instead, community evenness, differences in species composition, and abiotic variables are significant drivers. In particular, we find that high fish biomass is associated with fish assemblages dominated by a few generalist species of a high trophic level, who are able to exploit both the benthic and pelagic energy pathway. Our study provides a better understanding of the mechanisms behind marine ecosystem functioning and allows for the integration of biodiversity into management considerations.


Assuntos
Biodiversidade , Biomassa , Peixes , Animais , Ecossistema , Oceanos e Mares
6.
Sci Data ; 11(1): 24, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177193

RESUMO

Scientific bottom-trawl surveys are ecological observation programs conducted along continental shelves and slopes of seas and oceans that sample marine communities associated with the seafloor. These surveys report taxa occurrence, abundance and/or weight in space and time, and contribute to fisheries management as well as population and biodiversity research. Bottom-trawl surveys are conducted all over the world and represent a unique opportunity to understand ocean biogeography, macroecology, and global change. However, combining these data together for cross-ecosystem analyses remains challenging. Here, we present an integrated dataset of 29 publicly available bottom-trawl surveys conducted in national waters of 18 countries that are standardized and pre-processed, covering a total of 2,170 sampled fish taxa and 216,548 hauls collected from 1963 to 2021. We describe the processing steps to create the dataset, flags, and standardization methods that we developed to assist users in conducting spatio-temporal analyses with stable regional survey footprints. The aim of this dataset is to support research, marine conservation, and management in the context of global change.


Assuntos
Biodiversidade , Peixes , Animais , Ecossistema , Pesqueiros , Oceanos e Mares
7.
Trends Ecol Evol ; 38(12): 1143-1153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37684131

RESUMO

All aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration. We identify essential taxonomic elements from our interoperability assessment to support improved access and integration of taxonomic data. A stronger focus on these elements has the potential to involve taxonomic communities in biodiversity science and overcome broken linkages currently limiting research capacity. We encourage a community effort to democratize taxonomic expertise and language in order to facilitate maximum interoperability and integration.


Assuntos
Biodiversidade , Classificação , Conservação dos Recursos Naturais
8.
Curr Biol ; 31(21): 4817-4823.e5, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34499852

RESUMO

As climate change accelerates, species are shifting poleward and subtropical and tropical species are colonizing temperate environments.1-3 A popular approach for characterizing such responses is the community temperature index (CTI), which tracks the mean thermal affinity of a community. Studies in marine,4 freshwater,5 and terrestrial6 ecosystems have documented increasing CTI under global warming. However, most studies have only linked increasing CTI to increases in warm-affinity species. Here, using long-term monitoring of marine fishes across the Northern Hemisphere, we decomposed CTI changes into four underlying processes-tropicalization (increasing warm-affinity), deborealization (decreasing cold-affinity), borealization (increasing cold-affinity), and detropicalization (decreasing warm-affinity)-for which we examined spatial variability and drivers. CTI closely tracked changes in sea surface temperature, increasing in 72% of locations. However, 31% of these increases were primarily due to decreases in cold-affinity species, i.e., deborealization. Thus, increases in warm-affinity species were prevalent, but not ubiquitous. Tropicalization was stronger in areas that were initially warmer, experienced greater warming, or were deeper, while deborealization was stronger in areas that were closer to human population centers or that had higher community thermal diversity. When CTI (and temperature) increased, species that decreased were more likely to be living closer to their upper thermal limits or to be commercially fished. Additionally, warm-affinity species that increased had smaller body sizes than those that decreased. Our results show that CTI changes arise from a variety of underlying community responses that are linked to environmental conditions, human impacts, community structure, and species characteristics.


Assuntos
Mudança Climática , Ecossistema , Animais , Temperatura Baixa , Peixes , Aquecimento Global , Temperatura
9.
Sci Rep ; 9(1): 17878, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784548

RESUMO

A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced "fast-slow continuum" of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.


Assuntos
Peixes/fisiologia , Animais , Biodiversidade , Ecossistema , Peixes/crescimento & desenvolvimento , Aquecimento Global , Oceanos e Mares , Estações do Ano
10.
PLoS One ; 12(8): e0182826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800358

RESUMO

The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Cadeia Alimentar , Modelos Estatísticos , Animais , Biodiversidade , Biomassa , Mudança Climática , Ecossistema , Humanos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA