Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107653, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122008

RESUMO

The non-heme iron-dependent dioxygenase 2-aminoethanethiol dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyses Nt-cys sulfinylation, which promotes O2-dependent proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signalling (RGS) 4 and 5, and the pro-inflammatory cytokine interleukin-32 (IL32), all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. Furthermore, the role of individual chemical groups, active site metal, amino acid composition and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and IL32. We demonstrate, using surface plasmon response (SPR) and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence (15N-HSQC) nuclear magnetic resonance (NMR) titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.

2.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992806

RESUMO

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Assuntos
Proteoma , Fatores de Transcrição , Humanos , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Motivos de Aminoácidos , Peptídeos/metabolismo , Ligação Proteica , Acetilação
3.
J Am Chem Soc ; 146(31): 22027-22035, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052634

RESUMO

The development of a flow chemistry platform for the generation of modified protein targets via expressed protein ligation (EPL) is described. The flow EPL platform enables efficient ligation reactions with high recoveries of target protein products and superior reaction rates compared to corresponding batch processes. The utility of the flow EPL technology was first demonstrated through the semisynthesis of the tick-derived chemokine-binding protein ACA-01 containing two tyrosine sulfate modifications. Full-length, sulfated ACA-01 could be efficiently assembled by ligating a recombinantly expressed C-terminal protein fragment and a synthetic sulfopeptide thioester in flow. Following folding, the semisynthetic sulfoprotein was shown to exhibit potent binding to a variety of pro-inflammatory chemokines. In a second modified protein target, we employed an in-line flow EPL-photodesulfurization strategy to generate both unmodified and phosphorylated forms of human ß-synuclein by fusing a recombinant protein thioester, generated through cleavage of an intein fusion protein, and a synthetic (phospho)peptide. The semisynthetic proteins were assembled in 90 min in flow, a significant improvement over corresponding batch protein assembly, and enabled access to tens of milligrams of high purity material. Flow EPL has the potential to serve as a robust technology to streamline access to homogeneously modified proteins for a variety of applications in both academia, as well as in the pharmaceutical and biotechnology sector.


Assuntos
Humanos
4.
Acc Chem Res ; 56(19): 2688-2699, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37708351

RESUMO

Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.


Assuntos
Anticoagulantes , Trombina , Animais , Camundongos , Anticoagulantes/farmacologia , Sequência de Aminoácidos , Trombina/metabolismo , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Tirosina/química , Proteínas e Peptídeos Salivares
5.
Chemistry ; 30(44): e202401606, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38801240

RESUMO

The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Interações Hidrofóbicas e Hidrofílicas , Peptídeos Cíclicos , SARS-CoV-2 , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Antivirais/química , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Aminoácidos/química , Tratamento Farmacológico da COVID-19
6.
J Biomed Sci ; 31(1): 47, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724973

RESUMO

The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Urina/citologia , Medicina Regenerativa/métodos
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468674

RESUMO

The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas Conjugadas/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Vacina BCG/farmacologia , Proteínas de Bactérias , Linfócitos T CD4-Positivos/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , Receptor 2 Toll-Like/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
8.
Psychol Res ; 87(8): 2449-2459, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37258662

RESUMO

Despite the obvious importance of facial expressions of emotion, most studies have found that they do not bias attention. A critical limitation, however, is that these studies generally present face distractors on all trials of the experiment. For other kinds of emotional stimuli, such as emotional scenes, infrequently presented stimuli elicit greater attentional bias than frequently presented stimuli, perhaps due to suppression or habituation. The goal of the current study then was to test whether such modulation of attentional bias by distractor frequency generalizes to facial expressions of emotion. In Experiment 1, both angry and happy faces were unable to bias attention, despite being infrequently presented. Even when the location of these face cues were more unpredictable-presented in one of two possible locations-still no attentional bias was observed (Experiment 2). Moreover, there was no bottom-up influence for angry and happy faces shown under high or low perceptual load (Experiment 3). We conclude that task-irrelevant posed facial expressions of emotion cannot bias attention even when presented infrequently.


Assuntos
Emoções , Expressão Facial , Humanos , Tempo de Reação , Atenção , Ira
9.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818778

RESUMO

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Assuntos
Antineoplásicos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Linhagem Celular
10.
Biochem Soc Trans ; 50(1): 387-401, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34994377

RESUMO

Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.


Assuntos
Hirudinas , Trombina , Sequência de Aminoácidos , Animais , Anticoagulantes , Hirudinas/química , Hirudinas/metabolismo , Hirudinas/farmacologia , Trombina/metabolismo , Tirosina/metabolismo
11.
Angew Chem Int Ed Engl ; 61(20): e202200163, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35194928

RESUMO

Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.


Assuntos
Peptídeos , Proteínas
12.
Circ Res ; 124(4): 526-538, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590978

RESUMO

RATIONALE: Congenital heart disease can lead to life-threatening right ventricular (RV) heart failure. Results from clinical trials support expanding cardiac progenitor cell (CPC) based therapies. However, our recent data show that CPCs lose function as they age, starting as early as 1 year. OBJECTIVE: To determine whether the aggregation of child (1-5-year-old) CPCs into scaffold-free spheres can improve differentiation by enhancing Notch signaling, a known regulator of CPC fate. We hypothesized that aggregated (3-dimensional [3D]) CPCs will repair RV heart failure better than monolayer (2-dimensional [2D]) CPCs. METHODS AND RESULTS: Spheres were produced with 1500 CPCs each using a microwell array. CPC aggregation significantly increased gene expression of Notch1 compared with 2D CPCs, accompanied by significant upregulation of cardiogenic transcription factors (GATA4, HAND1, MEF2C, NKX2.5, and TBX5) and endothelial markers (CD31, FLK1, FLT1, VWF). Blocking Notch receptor activation with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) diminished these effects. To evaluate the therapeutic improvements of CPC aggregation, RV heart failure was induced in athymic rats by pulmonary artery banding, and cells were implanted into the RV free wall. Echocardiographic measurements 28 days postimplantation showed significantly improved RV function with 3D compared with 2D CPCs. Tracking implanted CPCs via DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide)-labeling showed improved retention of 3D CPCs. Transducing 3D CPCs with Notch1-shRNA (short hairpin RNA) did not reduce retention, but significantly reduced RV functional improvements. Histological analyses showed 3D treatment reduced RV fibrosis and increased angiogenesis. Although 3D CPCs formed CD31+ vessel-like cells in vivo, these effects are more likely because of improved 3D CPC exosome function compared with 2D CPC exosomes. CONCLUSIONS: Spherical aggregation improves child CPC function in a Notch-dependent manner. The strong reparative ability of CPC spheres warrants further investigation as a treatment for pediatric heart failure, especially in older children where reparative ability may be reduced.


Assuntos
Agregação Celular , Cardiopatias Congênitas/patologia , Insuficiência Cardíaca/terapia , Receptores Notch/metabolismo , Esferoides Celulares/metabolismo , Transplante de Células-Tronco/métodos , Disfunção Ventricular Direita/terapia , Animais , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/etiologia , Humanos , Lactente , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais , Esferoides Celulares/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Disfunção Ventricular Direita/complicações
13.
Psychol Res ; 85(5): 2119-2135, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32500242

RESUMO

Many studies have reported that spatial attention can be involuntarily captured by salient stimuli such as abrupt onsets. These involuntary shifts are often assumed to have the same effects on feature extraction as voluntary shifts: there are two different ways of moving the same attentional mechanism. According to this unified model of spatial attention, all shifts of attention should enhance the identification of attended objects. We directly tested this assumption using compatibility effects in a series of spatial cueing experiments. Participants searched a display and indicated whether the target number was greater or less than five. The salient precues were also numbers, allowing measurement of compatibility effects between the precue and the target. Precues that reliably predicted the target location produced compatibility effects (e.g., the precue "1" facilitated responding to the target "one"), indicating enhanced identification of the precue. Compatibility effects were also found for precues that were nonpredictive but had the target-finding feature (i.e., contingent capture). Critically, however, four separate experiments failed to find compatibility effects for salient abrupt onsets that were neither predictive nor task-relevant. This is surprising given that these same precues produced enormous cue validity effects (up to 186 ms), suggesting salience-based attention capture. Our findings argue against the unified model: salience-based attention capture recruits different attentional mechanisms than contingent capture or voluntary shifts in attention.


Assuntos
Viés de Atenção , Tempo de Reação , Comportamento Espacial , Adulto , Atenção , Conscientização , Sinais (Psicologia) , Humanos , Memória , Análise e Desempenho de Tarefas
14.
Stem Cells ; 37(12): 1528-1541, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574184

RESUMO

Nearly 1 in every 120 children born has a congenital heart defect. Although surgical therapy has improved survival, many of these children go on to develop right ventricular heart failure (RVHF). The emergence of cardiovascular regenerative medicine as a potential therapeutic strategy for pediatric HF has provided new avenues for treatment with a focus on repairing or regenerating the diseased myocardium to restore cardiac function. Although primarily tried using adult cells and adult disease models, stem cell therapy is relatively untested in the pediatric population. Here, we investigate the ability of electrical stimulation (ES) to enhance the retention and therapeutic function of pediatric cardiac-derived c-kit+ progenitor cells (CPCs) in an animal model of RVHF. Human CPCs isolated from pediatric patients were exposed to chronic ES and implanted into the RV myocardium of rats. Cardiac function and cellular retention analysis showed electrically stimulated CPCs (ES-CPCs) were retained in the heart at a significantly higher level and longer time than control CPCs and also significantly improved right ventricular functional parameters. ES also induced upregulation of extracellular matrix and adhesion genes and increased in vitro survival and adhesion of cells. Specifically, upregulation of ß1 and ß5 integrins contributed to the increased retention of ES-CPCs. Lastly, we show that ES induces CPCs to release higher levels of pro-reparative factors in vitro. These findings suggest that ES can be used to increase the retention, survival, and therapeutic effect of human c-kit+ progenitor cells and can have implications on a variety of cell-based therapies. Stem Cells 2019;37:1528-1541.


Assuntos
Estimulação Elétrica/métodos , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Função Ventricular Direita/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Integrina beta1/biossíntese , Masculino , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Medicina Regenerativa/métodos , Células-Tronco/citologia
16.
Circ Res ; 120(4): 701-712, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27872050

RESUMO

RATIONALE: Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. OBJECTIVE: We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. METHODS AND RESULTS: Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. CONCLUSIONS: CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Traumatismo por Reperfusão/terapia , Células-Tronco/fisiologia , Fatores Etários , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Compreensão , Método Duplo-Cego , Exossomos/transplante , Humanos , Lactente , Recém-Nascido , MicroRNAs/administração & dosagem , Miócitos Cardíacos/transplante , Distribuição Aleatória , Ratos , Ratos Nus , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos
17.
J Physiol ; 595(12): 3835-3845, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28028837

RESUMO

KEY POINTS: In atrial myocytes excitation-contraction coupling is strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system: Ca2+ release starts in the cell periphery and propagates towards the cell centre by Ca2+ -induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store. The cytosolic Ca2+ sensitivity of the ryanodine receptor (RyRs) Ca2+ release channel is low and it is unclear how Ca2+ release can be activated in the interior of atrial cells. Simultaneous confocal imaging of cytosolic and intra-SR calcium revealed a transient elevation of store Ca2+ that we termed 'Ca2+ sensitization signal'. We propose a novel paradigm of atrial ECC that is based on tandem activation of the RyRs by cytosolic and luminal Ca2+ through a 'fire-diffuse-uptake-fire' (or FDUF) mechanism: Ca2+ uptake by SR Ca2+ pumps at the propagation front elevates Ca2+ inside the SR locally, leading to luminal RyR sensitization and lowering of the cytosolic Ca2+ activation threshold. ABSTRACT: In atrial myocytes Ca2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca2+ entry activates Ca2+ -induced Ca2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca2+ release channels. Peripheral elevation of [Ca2+ ]i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca2+ ]i ; with the fluorescent Ca2+ indicator rhod-2) and intra-SR ([Ca2+ ]SR ; fluo-5N) Ca2+ in rabbit atrial myocytes revealed that Ca2+ release from j-SR resulted in a cytosolic Ca2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca2+ ]SR was smaller than nj-SR [Ca2+ ]SR . Similarly, Ca2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca2+ sparks) but smaller depletion (Ca2+ blinks) than release from nj-SR. During AP-induced Ca2+ release the rise of [Ca2+ ]i detected at individual release sites of the nj-SR preceded the depletion of [Ca2+ ]SR , and during this latency period a transient elevation of [Ca2+ ]SR occurred. We propose that Ca2+ release from nj-SR is activated by cytosolic and luminal Ca2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca2+ uptake by sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA) at the propagation front elevates local [Ca2+ ]SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Acoplamento Excitação-Contração/fisiologia , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Ventrículos do Coração/metabolismo , Masculino , Contração Miocárdica/fisiologia , Coelhos , Sarcolema/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
18.
Circ Res ; 116(2): 255-63, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25344555

RESUMO

RATIONALE: Myocardial infarction is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of myocardial infarction; however, the benefit of these cells may be as a result of paracrine effects. OBJECTIVE: We tested the hypothesis that CPCs secrete proregenerative exosomes in response to hypoxic conditions. METHODS AND RESULTS: The angiogenic and antifibrotic potential of secreted exosomes on cardiac endothelial cells and cardiac fibroblasts were assessed. We found that CPC exosomes secreted in response to hypoxia enhanced tube formation of endothelial cells and decreased profibrotic gene expression in TGF-ß-stimulated fibroblasts, indicating that these exosomes possess therapeutic potential. Microarray analysis of exosomes secreted by hypoxic CPCs identified 11 miRNAs that were upregulated compared with exosomes secreted by CPCs grown under normoxic conditions. Principle component analysis was performed to identify miRNAs that were coregulated in response to distinct exosome-generating conditions. To investigate the cue-signal-response relationships of these miRNA clusters with a physiological outcome of tube formation or fibrotic gene expression, partial least squares regression analysis was applied. The importance of each up- or downregulated miRNA on physiological outcomes was determined. Finally, to validate the model, we delivered exosomes after ischemia-reperfusion injury. Exosomes from hypoxic CPCs improved cardiac function and reduced fibrosis. CONCLUSIONS: These data provide a foundation for subsequent research of the use of exosomal miRNA and systems biology as therapeutic strategies for the damaged heart.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Biologia de Sistemas/métodos , Animais , Animais Recém-Nascidos , Hipóxia Celular/fisiologia , Ratos , Ratos Sprague-Dawley
19.
J Physiol ; 593(6): 1459-77, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25416623

RESUMO

KEY POINTS: Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT: We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.


Assuntos
Sinalização do Cálcio , Acoplamento Excitação-Contração , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Átrios do Coração/citologia , Masculino , Miócitos Cardíacos/fisiologia , Coelhos
20.
Am J Physiol Heart Circ Physiol ; 307(5): H689-700, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015964

RESUMO

Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.


Assuntos
Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Urocortinas/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Serina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA