RESUMO
BACKGROUND: Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated. METHODS: Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. RESULTS: Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. CONCLUSION: In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.
Assuntos
Mordeduras e Picadas de Insetos/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Humanos , Densidade Demográfica , TanzâniaRESUMO
Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with > or = 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.
Assuntos
Envelhecimento , Anopheles/classificação , Anopheles/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Feminino , Especificidade da EspécieRESUMO
BACKGROUND: Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings. Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito control using insecticide-treated nets or houses, particularly where vectors feed outdoors. METHODS AND FINDINGS: Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti)) was applied weekly through programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam, Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic surveillance of entomological inoculation rate (EIR) respectively constituted the primary and secondary outcomes surveyed within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km(2). Bti application for one year in 3 of those wards (17 km(2) with 128,000 residents) reduced crude annual transmission estimates (Relative EIR [95% Confidence Interval] = 0.683 [0.491-0.952], P = 0.024) but program effectiveness peaked between July and September (Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001) when 45% (9/20) of directly observed transmission events occurred. Larviciding reduced malaria infection risk among children < or =5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017) and provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614-0.951], P = 0.016). CONCLUSIONS: In this context, larviciding reduced malaria prevalence and complemented existing protection provided by insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly in its rapidly growing urban centres.