Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artif Life ; 29(3): 336-350, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787453

RESUMO

Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.


Assuntos
Robótica , Humanos , Redes Neurais de Computação , Plantas/microbiologia , Adaptação Fisiológica
2.
Environ Microbiol ; 23(10): 5883-5900, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33913577

RESUMO

The role that common mycorrhizal networks (CMNs) play in plant-to-plant transfer of zinc (Zn) has not yet been investigated, despite the proved functions of arbuscular mycorrhizal fungi (AMF) in crop Zn acquisition. Here, two autotrophic Medicago truncatula plants were linked by a CMN formed by Rhizophagus irregularis. Plants were grown in vitro in physically separated compartments (Donor-C and Receiver-C) and their connection ensured only by CMN. A symbiosis-defective mutant of M. truncatula was used as control in Receiver-C. Plants in both compartments were grown on Zn-free medium, and only the leaves of the donor plants were Zn fertilized. A direct transfer of Zn was demonstrated from donor leaves to receiver shoots mediated by CMN. Direct transfer of Zn was supported by changes in the expression of fungal genes, RiZRT1 and RiZnT1, and plant gene MtZIP2 in roots and MtNAS1 in roots and shoots of the receiver plants. Moreover, Zn transfer was supported by the change in expression of MtZIP14 gene in AM fungal colonized roots. This work is the first evidence of a direct Zn transfer from a donor to a receiver plant via CMN, and of a triggering of transcriptional regulation of fungal-plant genes involved in Zn transport-related processes.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Transporte , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Simbiose/genética , Zinco/metabolismo
3.
Mycorrhiza ; 30(2-3): 229-242, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32300867

RESUMO

In plant-fungus phenotyping, determining fungal hyphal and plant root lengths by digital image analysis can reduce labour and increase data reproducibility. However, the degree of software sophistication is often prohibitive and manual measuring is still used, despite being very time-consuming. We developed the HyLength tool for measuring the lengths of hyphae and roots in in vivo and in vitro systems. The HyLength was successfully validated against manual measures of roots and fungal hyphae obtained from all systems. Compared with manual methods, the HyLength underestimated Medicago sativa roots in the in vivo system and Rhizophagus irregularis hyphae in the in vitro system by about 12 cm per m and allowed to save about 1 h for a single experimental unit. As regards hyphae of R. irregularis in the in vivo system, the HyLength overestimated the length by about 21 cm per m compared with manual measures, but time saving was up to 20.5 h per single experimental unit. Finally, with hyphae of Aspergillus oryzae, the underestimation was about 8 cm per m with a time saving of about 10 min for a single germinating spore. By benchmarking the HyLength against the AnaMorf plugin of the ImageJ/Fiji, we found that the HyLength performed better for dense fungal hyphae, also strongly reducing the measuring time. The HyLength can allow measuring the length over a whole experimental unit, eliminating the error due to sub-area selection by the user and allowing processing a high number of samples. Therefore, we propose the HyLength as a useful freeware tool for measuring fungal hyphae of dense mycelia.


Assuntos
Hifas , Micorrizas , Raízes de Plantas , Reprodutibilidade dos Testes , Esporos Fúngicos
4.
BMC Bioinformatics ; 20(1): 474, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521109

RESUMO

BACKGROUND: In most mammals, a vast array of genes coding for chemosensory receptors mediates olfaction. Odorant receptor (OR) genes generally constitute the largest multifamily (> 1100 intact members in the mouse). From the whole pool, each olfactory neuron expresses a single OR allele following poorly characterized mechanisms termed OR gene choice. OR genes are found in genomic aggregations known as clusters. Nearby enhancers, named elements, are crucial regulators of OR gene choice. Despite their importance, searching for new elements is burdensome. Other chemosensory receptor genes responsible for smell adhere to expression modalities resembling OR gene choice, and are arranged in genomic clusters - often with chromosomal linkage to OR genes. Still, no elements are known for them. RESULTS: Here we present an inexpensive framework aimed at predicting elements. We redefine cluster identity by focusing on multiple receptor gene families at once, and exemplify thirty - not necessarily OR-exclusive - novel candidate enhancers. CONCLUSIONS: The pipeline we introduce could guide future in vivo work aimed at discovering/validating new elements. In addition, our study provides an updated and comprehensive classification of all genomic loci responsible for the transduction of olfactory signals in mammals.


Assuntos
Algoritmos , Elementos Facilitadores Genéticos , Genômica/métodos , Receptores Odorantes/genética , Análise de Sequência de DNA/normas , Animais , Humanos , Camundongos , Ratos
5.
Nat Mater ; 21(12): 1350-1351, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357690
6.
Nature ; 536(7617): 400-1, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558058

Assuntos
Robótica , Humanos
7.
Ann Bot ; 118(4): 685-698, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192709

RESUMO

Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm-3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h-1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm-3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered-soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm-3, whereas the actual experimental density was 1·48±0·02 g cm-3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and active root growth in response to touch stimulation and mechanical impedance.

8.
Biochim Biophys Acta ; 1840(1): 495-506, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24135455

RESUMO

BACKGROUND: Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS: We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS: Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS: Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE: This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.


Assuntos
Antioxidantes/metabolismo , Biomarcadores/metabolismo , Cério/química , Perfilação da Expressão Gênica , Nanopartículas/administração & dosagem , Nanopartículas/química , Estresse Oxidativo/genética , Animais , Análise de Sequência com Séries de Oligonucleotídeos , Células PC12 , RNA Mensageiro/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Biomed Microdevices ; 17(2): 46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25797705

RESUMO

In mechanobiology the study of cell response to mechanical stimuli is fundamental, and the involved processes (i.e., mechanotransduction) need to be investigated by interfacing (mechanically and electrically) with the cells in dynamic and non-invasive natural-like conditions. In this work, we present a novel soft, stretchable and conductive biointerface that allows both cell mechanical stimulation and dynamic impedance recording. The biointerface stretchability and conductivity, jointly to the biocompatibility and transparency needed to perform cell culture studies, were obtained by exploiting the formation of wrinkles on the surface of a 90 nm thick conductive layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on a pre-stretched 130 µm thick poly(dimethylsiloxane) (PDMS) substrate. Cell adhesion and proliferation of SH-SY5Y human neuroblastoma cells were evaluated, and cell differentiation on the corrugated surface was assessed. We demonstrate how the biointerface remains conductive when applying uniaxial strain up to 10%, and when cell culturing is performed. Finally, a reduction of about 30% of the relative impedance variation signal was measured, with respect to the control, as a result of the mechanical stimulation of cells.


Assuntos
Biologia Celular/instrumentação , Mecanotransdução Celular , Biofísica/instrumentação , Biofísica/métodos , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Dimetilpolisiloxanos , Desenho de Equipamento , Imunofluorescência , Humanos , Poliestirenos , Propriedades de Superfície , Tiofenos
10.
Pharm Res ; 31(11): 2952-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24805277

RESUMO

PURPOSE: Cerium oxide nanoparticles (nanoceria, NC) have extraordinary antioxidant activity that made them suitable as a therapeutic agent for several diseases where reactive oxygen species (ROS) act by impairing the normal redox balance. Among different functions, it has been proven that ROS are cellular messengers involved in the adipogenesis: we thus investigated the implication of NC administration in the potential inhibition of adipogenic differentiation of mesenchymal stem cells (MSCs) used as a model of adipogenesis. METHODS: We evaluated cytotoxic effects and adipogenic maturation of mesenchymal stem cells following in vitro NC administration, both at gene and at phenotype level. RESULTS: Overall, our results demonstrated that NC efficiently inhibit the maturation of MSCs toward adipocytes owing to their ability to reduce the production of the ROS necessary during adipogenesis. CONCLUSIONS: These findings, even if preliminary, represent an important step toward the potential pharmaceutical application of NC in the treatment of obesity.


Assuntos
Adipogenia/efeitos da radiação , Cério/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/administração & dosagem , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
Sci Robot ; 9(86): eadi5908, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232147

RESUMO

Self-growing robots are an emerging solution in soft robotics for navigating, exploring, and colonizing unstructured environments. However, their ability to grow and move in heterogeneous three-dimensional (3D) spaces, comparable with real-world conditions, is still developing. We present an autonomous growing robot that draws inspiration from the behavioral adaptive strategies of climbing plants to navigate unstructured environments. The robot mimics climbing plants' apical shoot to sense and coordinate additive adaptive growth via an embedded additive manufacturing mechanism and a sensorized tip. Growth orientation, comparable with tropisms in real plants, is dictated by external stimuli, including gravity, light, and shade. These are incorporated within a vector field method to implement the preferred adaptive behavior for a given environment and task, such as growth toward light and/or against gravity. We demonstrate the robot's ability to navigate through growth in relation to voids, potential supports, and thoroughfares in otherwise complex habitats. Adaptive twining around vertical supports can provide an escape from mechanical stress due to self-support, reduce energy expenditure for construction costs, and develop an anchorage point to support further growth and crossing gaps. The robot adapts its material printing parameters to develop a light body and fast growth to twine on supports or a tougher body to enable self-support and cross gaps. These features, typical of climbing plants, highlight a potential for adaptive robots and their on-demand manufacturing. They are especially promising for applications in exploring, monitoring, and interacting with unstructured environments or in the autonomous construction of complex infrastructures.

12.
Adv Mater ; 36(27): e2313906, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583068

RESUMO

Advances in bioinspired and biohybrid robotics are enabling the creation of multifunctional systems able to explore complex unstructured environments. Inspired by Avena fruits, a biohybrid miniaturized autonomous machine (HybriBot) composed of a biomimetic biodegradable capsule as cargo delivery system and natural humidity-driven sister awns as biological motors is reported. Microcomputed tomography, molding via two-photon polymerization and casting of natural awns into biodegradable materials is employed to fabricate multiple HybriBots capable of exploring various soil and navigating soil irregularities, such as holes and cracks. These machines replicate the dispersal movements and biomechanical performances of natural fruits, achieving comparable capsule drag forces up to ≈0.38 N and awns torque up to ≈100 mN mm-1. They are functionalized with fertilizer and are successfully utilized to germinate selected diaspores. HybriBots function as self-dispersed systems with applications in reforestation and precision agriculture.


Assuntos
Agricultura , Avena , Frutas , Frutas/química , Avena/química , Robótica/instrumentação , Fertilizantes/análise , Solo/química , Materiais Biomiméticos/química
13.
Bioinspir Biomim ; 19(5)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917810

RESUMO

Energy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as 'artificial leaves' on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion. Here, we build and test four artificial leaf designs with varying flexibility and degrees of freedom across the blade operating onNerium oleanderplants. We evaluate the apparent contact area (up to 10 cm2per leaf), the leaves' motion, together with the generated voltage, current and charge in low wind speeds of up to 3.3 m s-1and less. Single artificial leaves produced over 75 V and 1µA current peaks. Softer artificial leaves increase the contact area accessible for energy conversion, but a balance between softer and stiffer elements in the artificial blade is optimal to increase the frequency of contact-separation motion (here up to 10 Hz) for energy conversion also below 3.3 m s-1. Moreover, we tested how multiple leaves operating collectively during continuous wind energy harvesting over several days achieve a root mean square power of ∼6µW and are capable to transfer ∼80µC every 30-40 min to power a wireless temperature and humidity sensor autonomously and recurrently. The results experimentally reveal design strategies for energy harvesters providing autonomous micro power sources in plant ecosystems for example for sensing in precision agriculture and remote environmental monitoring.


Assuntos
Desenho de Equipamento , Folhas de Planta , Vento , Folhas de Planta/fisiologia , Movimento (Física)
14.
Adv Sci (Weinh) ; 11(30): e2400806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874316

RESUMO

The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion under non-ideal contact conditions, and integration into fully soft systems. The octopus can serve as an important source of inspiration for addressing these challenges. This review aims to accelerate research in octopus-inspired suction cups by providing a detailed analysis of the octopus sucker, determining meaningful performance metrics for suction cups on the basis of this analysis, and evaluating the state-of-the-art in suction cups according to these performance metrics. In total, 47 records describing suction cups are found, classified according to the deployed actuation method, and evaluated on performance metrics reflecting the level of sensorization, adhesion, and integration. Despite significant advances in recent years, the octopus sucker outperforms all suction cups on all performance metrics. The realization of high resolution tactile sensing in suction cups and the integration of such sensorized suction cups in soft continuum structures are identified as two major hurdles toward the realization of octopus-inspired manipulation strategies in soft continuum robot arms.

15.
Soft Robot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813671

RESUMO

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace and reflect the diversity of human society to address these broad challenges effectively. In recent years, gender inclusivity has received increasing attention, but it still remains a distant goal. In addition, awareness is rising around other dimensions of diversity, including nationality, religion, and politics. Unfortunately, despite the efforts, empirical evidence shows that the field has still a long way to go before achieving a sufficient level of equality, diversity, and inclusion across these spectra. This study focuses on the soft robotics community-a growing and relatively recent subfield-and it outlines the present state of equality and diversity panorama in this discipline. The article argues that its high interdisciplinary and accessibility make it a particularly welcoming branch of robotics. We discuss the elements that make this subdiscipline an example for the broader robotic field. At the same time, we recognize that the field should still improve in several ways and become more inclusive and diverse. We propose concrete actions that we believe will contribute to achieving this goal, and provide metrics to monitor its evolution.

16.
Small ; 9(9-10): 1672-85, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23423826

RESUMO

Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials. Thanks to their special chemical and physical characteristics, they have already found a large number of applications in the field of nanotechnology, and recent studies have shown their possible exploitation in the biomedical domain, both as nanocarriers and, more interestingly, as nanotransducers. In this review, the latest findings on the interactions between BNNTs and living systems are summarized, starting with the major issues of their stabilization in physiological media and their functionalization with bioactive molecules. Thereafter the biocompatibility data which have so far been made available are discussed, and the need for further extensive and standardized tests is highlighted. Finally, the appealing diagnostic and therapeutic opportunities offered by BNNT-based systems are described, envisioning the potential spill-over effects of such 'smart' and 'active' nanoparticles in nanomedicine.


Assuntos
Materiais Biocompatíveis , Compostos de Boro/química , Nanomedicina , Nanotubos , Idoso , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
17.
Langmuir ; 29(43): 13190-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24073802

RESUMO

A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease.


Assuntos
Inibidores de Adenosina Desaminase/química , Anti-Inflamatórios não Esteroides/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Polimetil Metacrilato/química , Polissacarídeos/química , Portadores de Fármacos/química , Cinética , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
Pharm Res ; 30(8): 2133-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23661146

RESUMO

PURPOSE: Oxidative stress has been found to play a key role in several diseases, that range from cancer to neurodegenerative disorders. Besides traditional anti-oxidant agents, in recent years much attention has been focused on nanotechnological solutions, including cerium oxide nanoparticles (nanoceria). METHODS: Thanks to its extraordinary catalytic properties, nanoceria mimics the activity of superoxide dismutase and of catalase, therefore acting as a reactive oxygen species (ROS) scavenger in many biological contexts. In this paper, we report on nanoceria interactions with PC12 cell line, that represents a valuable model for many features of central dopaminergic neurons. RESULTS: Nanoceria confirmed a strong anti-ROS action but, most interestingly, also showed beneficial effects on both cell differentiation and dopamine production. CONCLUSIONS: Even if deeper examinations will be necessary in order to better clarify the mechanisms at the base of the documented effects, nanoceria demonstrated a significant potential as pharmacological agent in the treatment of neurological disorders.


Assuntos
Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cério/farmacologia , Dopamina/metabolismo , Nanopartículas/metabolismo , Animais , Antioxidantes/química , Cério/química , Nanopartículas/química , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Nanotechnology ; 24(31): 315101, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23857963

RESUMO

This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.


Assuntos
Compostos de Boro , Meios de Contraste/química , Gadolínio , Imageamento por Ressonância Magnética/métodos , Nanotubos/química , Meios de Contraste/toxicidade , Humanos , Nanotecnologia , Nanotubos/toxicidade , Células Tumorais Cultivadas
20.
Sensors (Basel) ; 13(5): 6578-604, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23686140

RESUMO

In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr(-1) was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams.


Assuntos
Eletrônica/instrumentação , Pressão , Pele Artificial , Eletricidade , Humanos , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA