Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38373343

RESUMO

Objective.This study addresses a fundamental limitation of in-beam positron emission tomography (IB-PET) in proton therapy: the lack of direct anatomical representation in the images it produces. We aim to overcome this shortcoming by pioneering the application of deep learning techniques to create synthetic control CT images (sCT) from combining IB-PET and planning CT scan data.Approach.We conducted simulations involving six patients who underwent irradiation with proton beams. Leveraging the architecture of a visual transformer (ViT) neural network, we developed a model to generate sCT images of these patients using the planning CT scans and the inter-fractional simulated PET activity maps during irradiation. To evaluate the model's performance, a comparison was conducted between the sCT images produced by the ViT model and the authentic control CT images-serving as the benchmark.Main results.The structural similarity index was computed at a mean value across all patients of 0.91, while the mean absolute error measured 22 Hounsfield Units (HU). Root mean squared error and peak signal-to-noise ratio values were 56 HU and 30 dB, respectively. The Dice similarity coefficient exhibited a value of 0.98. These values are comparable to or exceed those found in the literature. More than 70% of the synthetic morphological changes were found to be geometrically compatible with the ones reported in the real control CT scan.Significance.Our study presents an innovative approach to surface the hidden anatomical information of IB-PET in proton therapy. Our ViT-based model successfully generates sCT images from inter-fractional PET data and planning CT scans. Our model's performance stands on par with existing models relying on input from cone beam CT or magnetic resonance imaging, which contain more anatomical information than activity maps.


Assuntos
Processamento de Imagem Assistida por Computador , Terapia com Prótons , Humanos , Processamento de Imagem Assistida por Computador/métodos , Terapia com Prótons/métodos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Phys Med ; 120: 103329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492331

RESUMO

GOAL: In-beam Positron Emission Tomography (PET) is a technique for in-vivo non-invasive treatment monitoring for proton therapy. To detect anatomical changes in patients with PET, various analysis methods exist, but their clinical interpretation is problematic. The goal of this work is to investigate whether the gamma-index analysis, widely used for dose comparisons, is an appropriate tool for comparing in-beam PET distributions. Focusing on a head-and-neck patient, we investigate whether the gamma-index map and the passing rate are sensitive to progressive anatomical changes. METHODS/MATERIALS: We simulated a treatment course of a proton therapy patient using FLUKA Monte Carlo simulations. Gradual emptying of the sinonasal cavity was modeled through a series of artificially modified CT scans. The in-beam PET activity distributions from three fields were evaluated, simulating a planar dual head geometry. We applied the 3D-gamma evaluation method to compare the PET images with a reference image without changes. Various tolerance criteria and parameters were tested, and results were compared to the CT-scans. RESULTS: Based on 210 MC simulations we identified appropriate parameters for the gamma-index analysis. Tolerance values of 3 mm/3% and 2 mm/2% were suited for comparison of simulated in-beam PET distributions. The gamma passing rate decreased with increasing volume change for all fields. CONCLUSION: The gamma-index analysis was found to be a useful tool for comparing simulated in-beam PET images, sensitive to sinonasal cavity emptying. Monitoring the gamma passing rate behavior over the treatment course is useful to detect anatomical changes occurring during the treatment course.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Etoposídeo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Front Oncol ; 12: 929949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226070

RESUMO

Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan.

4.
Med Phys ; 49(1): 23-40, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34813083

RESUMO

PURPOSE: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. METHODS: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. RESULTS: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. CONCLUSIONS: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments.


Assuntos
Terapia com Prótons , Humanos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
5.
Front Oncol ; 11: 601784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178614

RESUMO

Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed.

6.
Comput Biol Med ; 87: 1-7, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28544911

RESUMO

The complexity and heterogeneity of Autism Spectrum Disorders (ASD) require the implementation of dedicated analysis techniques to obtain the maximum from the interrelationship among many variables that describe affected individuals, spanning from clinical phenotypic characterization and genetic profile to structural and functional brain images. The ARIANNA project has developed a collaborative interdisciplinary research environment that is easily accessible to the community of researchers working on ASD (https://arianna.pi.infn.it). The main goals of the project are: to analyze neuroimaging data acquired in multiple sites with multivariate approaches based on machine learning; to detect structural and functional brain characteristics that allow the distinguishing of individuals with ASD from control subjects; to identify neuroimaging-based criteria to stratify the population with ASD to support the future development of personalized treatments. Secure data handling and storage are guaranteed within the project, as well as the access to fast grid/cloud-based computational resources. This paper outlines the web-based architecture, the computing infrastructure and the collaborative analysis workflows at the basis of the ARIANNA interdisciplinary working environment. It also demonstrates the full functionality of the research platform. The availability of this innovative working environment for analyzing clinical and neuroimaging information of individuals with ASD is expected to support researchers in disentangling complex data thus facilitating their interpretation.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Feminino , Humanos , Internet , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA