Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256199

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. A maternal high LA (HLA) diet alters cardiovascular development in adolescent rats and hepatic function in adult rats in a sex-specific manner. We investigated the effects of an HLA diet on adolescent offspring hepatic lipids and hepatic lipid metabolism gene expression, and the ability of the postnatal diet to alter these effects. Female Wistar Kyoto rats were fed low LA (LLA; 1.44% energy from LA) or high LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring, weaned at postnatal day (PN) 25, were fed LLA or HLA and euthanised at PN40 (n = 6-8). Maternal HLA increased circulating uric acid, decreased hepatic cholesterol and increased hepatic Pparg in males, whereas only hepatic Srebf1 and Hmgcr increased in females. Postnatal (post-weaning) HLA decreased liver weight (% body weight) and increased hepatic Hmgcr in males, and decreased hepatic triglycerides in females. Maternal and postnatal HLA had an interaction effect on Lpl, Cpt1a and Pparg in females. These findings suggest that an HLA diet both during and after pregnancy should be avoided to improve offspring disease risk.


Assuntos
Ácido Linoleico , Metabolismo dos Lipídeos , Feminino , Masculino , Gravidez , Ratos , Animais , PPAR gama , Dieta , Fígado , Ratos Endogâmicos WKY , Ácidos Graxos Ômega-6
2.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063152

RESUMO

Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.


Assuntos
Encéfalo , Endocanabinoides , Ácidos Graxos , Ácido Linoleico , Plasmalogênios , Feminino , Animais , Masculino , Gravidez , Ratos , Encéfalo/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Endocanabinoides/sangue , Endocanabinoides/metabolismo , Ácido Linoleico/sangue , Plasmalogênios/sangue , Plasmalogênios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/sangue , Caracteres Sexuais , Fatores Sexuais
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
4.
Expert Opin Investig Drugs ; 33(3): 183-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372052

RESUMO

INTRODUCTION: Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the ß-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED: This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION: GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Incretinas , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA