Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Rev Mol Cell Biol ; 24(8): 543-559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964313

RESUMO

The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Animais , Fuso Acromático/metabolismo , Cinetocoros/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Microtúbulos/metabolismo , Segregação de Cromossomos , Proteínas de Ciclo Celular/genética , Mamíferos/genética
2.
Annu Rev Genet ; 56: 279-314, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055650

RESUMO

Kinetochores are molecular machines that power chromosome segregation during the mitotic and meiotic cell divisions of all eukaryotes. Aristotle explains how we think we have knowledge of a thing only when we have grasped its cause. In our case, to gain understanding of the kinetochore, the four causes correspond to questions that we must ask: (a) What are the constituent parts, (b) how does it assemble, (c) what is the structure and arrangement, and (d) what is the function? Here we outline the current blueprint for the assembly of a kinetochore, how functions are mapped onto this architecture, and how this is shaped by the underlying pericentromeric chromatin. The view of the kinetochore that we present is possible because an almost complete parts list of the kinetochore is now available alongside recent advances using in vitro reconstitution, structural biology, and genomics. In many organisms, each kinetochore binds to multiple microtubules, and we propose a model for how this ensemble-level architecture is organized, drawing on key insights from the simple one microtubule-one kinetochore setup in budding yeast and innovations that enable meiotic chromosome segregation.


Assuntos
Centrômero , Cinetocoros , Centrômero/genética , Segregação de Cromossomos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Cromatina/genética , Cromatina/metabolismo
3.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174292

RESUMO

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Assuntos
Proteínas Cromossômicas não Histona/ultraestrutura , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Proteína Centromérica A/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo
4.
Bioinformatics ; 38(12): 3315-3317, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35579370

RESUMO

MOTIVATION: Lattice light-sheet microscopy (LLSM) is revolutionizing cell biology since it enables fast, high-resolution extended imaging in three dimensions combined with a drastic reduction in photo-toxicity and bleaching. However, analysis of such datasets still remains a major challenge. RESULTS: Automated tracking of kinetochores, the protein complex facilitating and controlling microtubule attachment of the chromosomes within the mitotic spindle, provides quantitative assessment of chromosome dynamics in mitosis. Here, we extend existing open-source kinetochore tracking software (KiT) to track (and pair) kinetochores throughout prometaphase to anaphase in LLSM data. One of the key improvements is a regularization term in the objective function to enforce biological information about the number of kinetochores in a human mitotic cell, as well as improved diagnostic tools. This software provides quantitative insights into how kinetochores robustly ensure congression and segregation of chromosomes during mitosis. AVAILABILITY AND IMPLEMENTATION: KiT is free, open-source software implemented in MATLAB and can be downloaded as a package from https://github.com/cmcb-warwick/KiT. The source repository is available at https://bitbucket.org/jarmond/kit (tag v2.4.0) and under continuing development. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cinetocoros , Fuso Acromático , Humanos , Fuso Acromático/genética , Anáfase , Microtúbulos/metabolismo , Software , Segregação de Cromossomos
5.
PLoS Comput Biol ; 18(12): e1010765, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574448

RESUMO

Gaussian spot fitting methods have significantly extended the spatial range where fluorescent microscopy can be used, with recent techniques approaching nanometre (nm) resolutions. However, small inter-fluorophore distances are systematically over-estimated for typical molecular scales. This bias can be corrected computationally, but current algorithms are limited to correcting distances between pairs of fluorophores. Here we present a flexible Bayesian computational approach that infers the distances and angles between multiple fluorophores and has several advantages over these previous methods. Specifically it improves confidence intervals for small lengths, estimates measurement errors of each fluorophore individually and infers the correlations between polygon lengths. The latter is essential for determining the full multi-fluorophore 3D architecture. We further developed the algorithm to infer the mixture composition of a heterogeneous population of multiple polygon states. We use our algorithm to analyse the 3D architecture of the human kinetochore, a macro-molecular complex that is essential for high fidelity chromosome segregation during cell division. Using triple fluorophore image data we unravel the mixture of kinetochore states during human mitosis, inferring the conformation of microtubule attached and unattached kinetochores and their proportions across mitosis. We demonstrate that the attachment conformation correlates with intersister tension and sister alignment to the metaphase plate.


Assuntos
Cinetocoros , Microtúbulos , Humanos , Teorema de Bayes , Mitose , Fuso Acromático
6.
J Cell Sci ; 131(8)2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29535210

RESUMO

Actins are major eukaryotic cytoskeletal proteins, and they are involved in many important cell functions, including cell division, cell polarity, wound healing and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively for biochemical studies of the non-muscle actin cytoskeleton. Here, we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris Actin is expressed as a fusion with the actin-binding protein thymosin ß4 and purified by means of an affinity tag introduced in the fusion. Following cleavage of thymosin ß4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from Saccharomycescerevisiae and Schizosaccharomycespombe, and the ß- and γ-isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate dendritic actin networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Humanos , Pichia
7.
Proc Natl Acad Sci U S A ; 113(12): E1635-44, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26969727

RESUMO

Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5.


Assuntos
Cinesinas/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/ultraestrutura , Genes Reporter , Humanos , Cinesinas/química , Microtúbulos/efeitos dos fármacos , Movimento (Física) , Paclitaxel/farmacologia , Polimerização , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/metabolismo , Vimblastina/farmacologia
8.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630074

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a diarrheagenic pathogen that colonizes the gut mucosa and induces attaching-and-effacing lesions. EHEC employs a type III secretion system (T3SS) to translocate 50 effector proteins that hijack and manipulate host cell signaling pathways, which allow bacterial colonization and subversion of immune responses and disease progression. The aim of this study was to characterize the T3SS effector EspW. We found espW in the sequenced O157:H7 and non-O157 EHEC strains as well as in Shigella boydii Furthermore, a truncated version of EspW, containing the first 206 residues, is present in EPEC strains belonging to serotype O55:H7. Screening a collection of clinical EPEC isolates revealed that espW is present in 52% of the tested strains. We report that EspW modulates actin dynamics in a Rac1-dependent manner. Ectopic expression of EspW results in formation of unique membrane protrusions. Infection of Swiss cells with an EHEC espW deletion mutant induces a cell shrinkage phenotype that could be rescued by Rac1 activation via expression of the bacterial guanine nucleotide exchange factor, EspT. Furthermore, using a yeast two-hybrid screen, we identified the motor protein Kif15 as a potential interacting partner of EspW. Kif15 and EspW colocalized in cotransfected cells, while ectopically expressed Kif15 localized to the actin pedestals following EHEC infection. The data suggest that Kif15 recruits EspW to the site of bacterial attachment, which in turn activates Rac1, resulting in modifications of the actin cytoskeleton that are essential to maintain cell shape during infection.


Assuntos
Actinas/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Humanos , Cinesinas/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
9.
J Cell Sci ; 128(18): 3363-74, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330530

RESUMO

A universal feature of mitosis is that all chromosomes become aligned at the spindle equator--the halfway point between the two spindle poles--prior to anaphase onset. This migratory event is called congression, and is powered by centromere-bound protein machines called kinetochores. This Commentary aims to document recent advances concerning the two kinetochore-based force-generating mechanisms that drive mitotic chromosome congression in vertebrate cells: depolymerisation-coupled pulling (DCP) and lateral sliding. We aim to explore how kinetochores can 'read-out' their spatial position within the spindle, and adjust these force-generating mechanisms to ensure chromosomes reach, and then remain, at the equator. Finally, we will describe the 'life history' of a chromosome, and provide a working model for how individual mechanisms are integrated to ensure efficient and successful congression.


Assuntos
Pareamento Cromossômico , Segregação de Cromossomos , Cinetocoros/fisiologia , Modelos Biológicos , Animais , Centrômero , Puffs Cromossômicos , Células HeLa , Humanos , Fuso Acromático , Vertebrados
10.
J Cell Sci ; 128(1): 171-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25395579

RESUMO

A key step of mitosis is the congression of chromosomes to the spindle equator. Congression is driven by at least two distinct mechanisms: (1) kinetochores slide along the microtubule lattice using the plus-end directed CENP-E motor, and (2) kinetochores biorientating near the pole move to the equator through microtubule depolymerisation-coupled pulling. Here, we show that CENP-Q - a subunit of the CENP-O complex (comprising CENP-O, CENP-P, CENP-Q and CENP-U) that targets polo-like kinase (Plk1) to kinetochores - is also required for the recruitment of CENP-E to kinetochores. We further reveal a CENP-E recruitment-independent role for CENP-Q in depolymerisation-coupled pulling. Both of these functions are abolished by a single point mutation in CENP-Q (S50A) - a residue that is phosphorylated in vivo. Importantly, the S50A mutant does not affect the loading of Plk1 onto kinetochores and leaves the CENP-O complex intact. Thus, the functions of CENP-Q in CENP-E loading and depolymerisation-coupled pulling are independent from its role in Plk1 recruitment and CENP-O complex stabilisation. Taken together, our data provide evidence that phosphoregulation of CENP-Q plays a central function in coordinating chromosome congression mechanisms.


Assuntos
Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos/metabolismo , Cinetocoros/metabolismo , Complexos Multiproteicos/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Quinase 1 Polo-Like
11.
J Cell Sci ; 128(10): 1991-2001, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908867

RESUMO

Kinetochores regulate the dynamics of attached microtubule bundles (kinetochore-fibres, K-fibres) to generate the forces necessary for chromosome movements in mitosis. Current models suggest that poleward-moving kinetochores are attached to depolymerising K-fibres and anti-poleward-moving kinetochores to polymerising K-fibres. How the dynamics of individual microtubules within the K-fibre relate to poleward and anti-poleward movements is poorly understood. To investigate this, we developed a live-cell imaging assay combined with computational image analysis that allows eGFP-tagged EB3 (also known as MAPRE3) to be quantified at thousands of individual metaphase kinetochores as they undergo poleward and anti-poleward motion. Surprisingly, we found that K-fibres are incoherent, containing both polymerising and depolymerising microtubules ­ with a small polymerisation bias for anti-poleward-moving kinetochores. K-fibres also display bursts of EB3 intensity, predominantly on anti-poleward-moving kinetochores, equivalent to more coherent polymerisation, and this was associated with more regular oscillations. The frequency of bursts and the polymerisation bias decreased upon loss of kinesin-13, whereas loss of kinesin-8 elevated polymerisation bias. Thus, kinetochores actively set the balance of microtubule polymerisation dynamics in the K-fibre while remaining largely robust to fluctuations in microtubule polymerisation.


Assuntos
Cromossomos/fisiologia , Cinesinas/metabolismo , Cinetocoros/metabolismo , Metáfase/fisiologia , Microtúbulos/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Mitose/fisiologia , Polimerização
12.
Bioinformatics ; 32(12): 1917-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153705

RESUMO

UNLABELLED: During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. AVAILABILITY AND IMPLEMENTATION: KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: jonathan.armond@warwick.ac.uk.


Assuntos
Aumento da Imagem , Cinetocoros , Software , Algoritmos , Gráficos por Computador , Fluorescência , Humanos , Fuso Acromático , Interface Usuário-Computador
13.
PLoS Comput Biol ; 11(11): e1004607, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26618929

RESUMO

Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing.


Assuntos
Cinetocoros/metabolismo , Cinetocoros/fisiologia , Modelos Biológicos , Algoritmos , Fenômenos Biomecânicos , Biologia Computacional , Células HeLa , Humanos , Mitose/fisiologia
14.
J Cell Sci ; 126(Pt 9): 2102-13, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23532825

RESUMO

Microtubule-associated proteins of the mitotic spindle are thought to be important for the initial assembly and the maintenance of spindle structure and function. However, distinguishing assembly and maintenance roles for a given protein is difficult. Most experimental methods for protein inactivation are slow and therefore affect both assembly and maintenance. Here, we have used 'knocksideways' to rapidly (∼5 minutes) and specifically remove TACC3-ch-TOG-clathrin non-motor complexes from kinetochore fibers (K-fibers). This method allows the complex to be inactivated at defined stages of mitosis. Removal of TACC3-ch-TOG-clathrin after nuclear envelope breakdown caused severe delays in chromosome alignment. Inactivation at metaphase, following a normal prometaphase, significantly delayed progression to anaphase. In these cells, K-fiber tension was reduced and the spindle checkpoint was not satisfied. Surprisingly, there was no significant loss of K-fiber microtubules, even after prolonged removal. TACC3-ch-TOG-clathrin removal during metaphase also resulted in a decrease in spindle length and significant alteration in kinetochore dynamics. Our results indicate that TACC3-ch-TOG-clathrin complexes are important for the maintenance of spindle structure and function as well as for initial spindle assembly.


Assuntos
Cromossomos Humanos/metabolismo , Cinetocoros/metabolismo , Metáfase/fisiologia , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Fuso Acromático/metabolismo , Cromossomos Humanos/genética , Clatrina/genética , Clatrina/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Complexos Multiproteicos/genética , Fuso Acromático/genética
15.
Curr Biol ; 34(1): 117-131.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134935

RESUMO

Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a "cohesin bridge" between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age.


Assuntos
Proteínas de Ciclo Celular , Oócitos , Humanos , Feminino , Idoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Coesinas , Meiose , Centrômero/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos
16.
Semin Cell Dev Biol ; 22(9): 946-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22027615

RESUMO

For over 70 years, chromosomes have been known to oscillate back-and-forth on the metaphase plate. These movements are directed by kinetochores, the microtubule-attachment complexes on centromeres that regulate the dynamics of bound spindle microtubules. Recent evidence shows that the CCAN (Constitutive Centromere Associated Network) kinetochore network, which directly binds centromeric nucleosomes, plays a crucial role in the control of kinetochore microtubule dynamics. Here we review how this 15-subunit protein network functions within the kinetochore machinery, how it may adapt dynamically both in time and in space to the functional requirements necessary for controlled and faithful chromosome movements during cell division, and how this conserved protein network may have evolved in organisms with different cell division machineries.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Cromossômicas não Histona/genética , Humanos , Modelos Estruturais
17.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100916

RESUMO

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Assuntos
Ciclo Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Linhagem Celular , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Humanos , Ligação Proteica
18.
J Cell Biol ; 179(2): 187-97, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17938248

RESUMO

We have combined the proteomic analysis of Xenopus laevis in vitro-assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule-kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Posicionamento Cromossômico , Cinetocoros/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animais , Centrossomo/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fenótipo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo
19.
Chromosome Res ; 19(3): 409-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21331796

RESUMO

As a mechanical system, the kinetochore can be viewed as a set of interacting springs, clutches and motors; the problem of kinetochore mechanism is now one of understanding how these functional modules assemble, disassemble and interact with one another to give rise to the emergent properties of the system. The sheer complexity of the kinetochore system points to a future requirement for data-driven mathematical modelling and statistical analysis based on quantitative empirical measurement of sister kinetochore trajectories. Here, we review existing models of chromosome motion in the context of recent advances in our understanding of kinetochore molecular biology.


Assuntos
Simulação por Computador , Cinetocoros/metabolismo , Modelos Biológicos , Animais , Humanos , Cinetocoros/química , Microtúbulos/metabolismo , Ligação Proteica
20.
Nat Commun ; 13(1): 4704, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948594

RESUMO

Current models infer that the microtubule-based mitotic spindle is built from GDP-tubulin with small GTP caps at microtubule plus-ends, including those that attach to kinetochores, forming the kinetochore-fibres. Here we reveal that kinetochore-fibres additionally contain a dynamic mixed-nucleotide zone that reaches several microns in length. This zone becomes visible in cells expressing fluorescently labelled end-binding proteins, a known marker for GTP-tubulin, and endogenously-labelled HURP - a protein which we show to preferentially bind the GDP microtubule lattice in vitro and in vivo. We find that in mitotic cells HURP accumulates on the kinetochore-proximal region of depolymerising kinetochore-fibres, whilst avoiding recruitment to nascent polymerising K-fibres, giving rise to a growing "HURP-gap". The absence of end-binding proteins in the HURP-gaps leads us to postulate that they reflect a mixed-nucleotide zone. We generate a minimal quantitative model based on the preferential binding of HURP to GDP-tubulin to show that such a mixed-nucleotide zone is sufficient to recapitulate the observed in vivo dynamics of HURP-gaps.


Assuntos
Cinetocoros , Tubulina (Proteína) , Guanosina Trifosfato/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nucleotídeos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA