Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Ther ; 30(12): 3619-3631, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35965414

RESUMO

CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Humanos , Animais , Camundongos
2.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238586

RESUMO

Beta genus human papillomaviruses (ß-HPVs) cause cutaneous squamous cell carcinomas (cSCCs) in a subset of immunocompromised patients. However, ß-HPVs are not necessary for tumor maintenance in the general population. Instead, they may destabilize the genome in the early stages of cancer development. Supporting this idea, ß-HPV's 8E6 protein attenuates p53 accumulation after failed cytokinesis. This paper offers mechanistic insight into how ß-HPV E6 causes this change in cell signaling. An in silico screen and characterization of HCT 116 cells lacking p300 suggested that the histone acetyltransferase is a negative regulator of Hippo pathway (HP) gene expression. HP activation restricts growth in response to stimuli, including failed cytokinesis. Loss of p300 resulted in increased HP gene expression, including proproliferative genes associated with HP inactivation. ß-HPV 8E6 expression recapitulates some of these phenotypes. We used a chemical inhibitor of cytokinesis (dihydrocytochalasin B [H2CB]) to induce failed cytokinesis. This system allowed us to show that ß-HPV 8E6 reduced activation of large tumor suppressor kinase (LATS), an HP kinase. LATS is required for p53 accumulation following failed cytokinesis. These phenotypes were dependent on ß-HPV 8E6 destabilizing p300 and did not completely attenuate the HP. It did not alter H2CB-induced nuclear exclusion of the transcription factor YAP. ß-HPV 8E6 also did not decrease HP activation in cells grown to a high density. Although our group and others have previously described inhibition of DNA repair, to the best of our knowledge, this marks the first time that a ß-HPV E6 protein has been shown to hinder HP signaling.IMPORTANCE ß-HPVs contribute to cSCC development in immunocompromised populations. However, it is unclear if these common cutaneous viruses are tumorigenic in the general population. Thus, a more thorough investigation of ß-HPV biology is warranted. If ß-HPV infections do promote cSCCs, they are hypothesized to destabilize the cellular genome. In vitro data support this idea by demonstrating the ability of the ß-HPV E6 protein to disrupt DNA repair signaling events following UV exposure. We show that ß-HPV E6 more broadly impairs cellular signaling, indicating that the viral protein dysregulates the HP. The HP protects genome fidelity by regulating cell growth and apoptosis in response to a myriad of deleterious stimuli, including failed cytokinesis. After failed cytokinesis, ß-HPV 8E6 attenuates phosphorylation of the HP kinase (LATS). This decreases some, but not all, HP signaling events. Notably, ß-HPV 8E6 does not limit senescence associated with failed cytokinesis.


Assuntos
Citocinese/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocalasina B/análogos & derivados , Citocalasina B/farmacologia , Citocinese/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína p300 Associada a E1A/deficiência , Proteína p300 Associada a E1A/genética , Regulação da Expressão Gênica , Células HCT116 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/virologia , Papillomaviridae/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168370

RESUMO

An abnormal expansion of a GGGGCC hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we developed a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform effectively curbed the expression of the GGGGCC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci and reversed transcriptional deficits. This high-fidelity Cas13 variant possessed improved transcriptome-wide specificity compared to its native form and mediated efficient targeting in motor neuron-like cells derived from a patient with ALS. Our results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.

4.
Sci Adv ; 8(3): eabk2485, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044815

RESUMO

Cas13 nucleases are a class of programmable RNA-targeting CRISPR effector proteins that are capable of silencing target gene expression in mammalian cells. Here, we demonstrate that RfxCas13d, a Cas13 ortholog with favorable characteristics to other family members, can be delivered to the mouse spinal cord and brain to silence neurodegeneration-associated genes. Intrathecally delivering an adeno-associated virus vector encoding an RfxCas13d variant programmed to target superoxide dismutase 1 (SOD1), a protein whose mutation can cause amyotrophic lateral sclerosis, reduced SOD1 mRNA and protein in the spinal cord by >50% and improved outcomes in a mouse model of the disorder. We further show that intrastriatally delivering an RfxCas13d variant programmed to target huntingtin (HTT), a protein whose mutation is causative for Huntington's disease, led to a ~50% reduction in HTT protein in the mouse brain. Our results establish RfxCas13d as a versatile platform for knocking down gene expression in the nervous system.


Assuntos
Esclerose Lateral Amiotrófica , Sistemas CRISPR-Cas , Esclerose Lateral Amiotrófica/genética , Animais , Inativação Gênica , Mamíferos , Camundongos , Medula Espinal , Superóxido Dismutase , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA