Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 103(4): 2679-2757, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382939

RESUMO

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.


Assuntos
Músculo Esquelético , Transdução de Sinais , Humanos , Animais , Cães , Músculo Esquelético/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , Hipertrofia/metabolismo , Mamíferos/metabolismo
2.
Stem Cells ; 42(3): 266-277, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38066665

RESUMO

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed an MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.


Assuntos
Células-Tronco Adultas , Músculo Esquelético , Animais , Camundongos , Diferenciação Celular , Divisão Celular
3.
J Physiol ; 601(4): 723-741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629254

RESUMO

Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Atrofia/metabolismo , Atrofia/patologia
4.
J Physiol ; 601(4): 763-782, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533424

RESUMO

Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.


Assuntos
Envelhecimento , Reprogramação Celular , Exercício Físico , Músculo Esquelético , Animais , Humanos , Camundongos , Reprogramação Celular/genética , Modelos Animais de Doenças , Metilação de DNA , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia
5.
J Biol Chem ; 298(11): 102515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150502

RESUMO

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilação da Expressão Gênica
6.
Cell Biol Toxicol ; 39(6): 2861-2880, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37058270

RESUMO

BACKGROUND: Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS: High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS: We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION: Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.


Assuntos
MicroRNAs , Transcriptoma , Ratos , Animais , Transcriptoma/genética , Rim , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo
7.
FASEB J ; 35(10): e21893, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480776

RESUMO

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.


Assuntos
Adaptação Fisiológica , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Animais , Humanos
8.
FASEB J ; 35(6): e21644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033143

RESUMO

How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrß3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Exercício Físico , Vesículas Extracelulares/fisiologia , Lipólise , MicroRNAs/genética , Músculo Esquelético/fisiopatologia , Estresse Mecânico , Fator de Transcrição AP-2/metabolismo , Adolescente , Adulto , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição AP-2/genética , Adulto Jovem
9.
FASEB J ; 35(5): e21587, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891350

RESUMO

We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2 ). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10-7 for rs4675569, 1.7 × 10-6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P < .05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P < .05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P < .05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology.


Assuntos
Hipertrofia/patologia , Íntrons , Fibras Musculares Esqueléticas/patologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Treinamento Resistido/efeitos adversos , Proteína Gli3 com Dedos de Zinco/genética , Adulto , Estudo de Associação Genômica Ampla , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem
10.
Cell Mol Life Sci ; 78(15): 5775-5787, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196731

RESUMO

Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation. Some of the most frequent side-effects of chemotherapy are loss of skeletal muscle mass, muscular strength and an increase in fatigue. Given that ribosome biogenesis has emerged as a main mechanism regulating muscle hypertrophy, and more recently, also implicated in muscle atrophy, we propose that some chemotherapy drugs can cause further muscle wasting via its effect on skeletal muscle cells. Many chemotherapy drugs, including the most prescribed drugs such as doxorubicin and cisplatin, affect ribosomal DNA transcription, or other pathways related to ribosome biogenesis. Furthermore, middle-aged and older individuals are the most affected population with cancer, and advanced cancer patients often show reduced levels of physical inactivity. Thus, aging and inactivity can themselves affect muscle ribosome biogenesis, which can further worsen the effect of chemotherapy on skeletal muscle ribosome biogenesis and, ultimately, muscle mass and function. We propose that chemotherapy can accelerate the onset or worsen cancer cachexia via its inhibitory effects on skeletal muscle ribosome biogenesis. We end our review by providing recommendations that could be used to ameliorate the negative effects of chemotherapy on skeletal muscle ribosome biogenesis.


Assuntos
Antineoplásicos/farmacologia , Caquexia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Ribossomos/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Humanos , Músculo Esquelético/efeitos dos fármacos , Biogênese de Organelas
11.
J Physiol ; 599(3): 845-861, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944292

RESUMO

Regular exercise has a central role in human health by reducing the risk of type 2 diabetes, obesity, stroke and cancer. How exercise is able to promote such systemic benefits has remained somewhat of a mystery but has been thought to be in part mediated by the release of myokines, skeletal muscle-specific cytokines, in response to exercise. Recent studies have revealed skeletal muscle can also release extracellular vesicles (EVs) into circulation following a bout of exercise. EVs are small membrane-bound vesicles capable of delivering biomolecules to recipient cells and subsequently altering their metabolism. The notion that EVs may have a role in both skeletal muscle and systemic adaptation to exercise has generated a great deal of excitement within a number of different fields including exercise physiology, neuroscience and metabolism. The purpose of this review is to provide an introduction to EV biology and what is currently known about skeletal muscle EVs and their potential role in the response of muscle and other tissues to exercise.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Adaptação Fisiológica , Exercício Físico , Humanos , Músculo Esquelético
12.
J Physiol ; 599(21): 4845-4863, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569067

RESUMO

There is emerging evidence of a gut microbiome-skeletal muscle axis. The purpose of this study was to determine if an intact gut microbiome was necessary for skeletal muscle adaptation to exercise. Forty-two 4-month-old female C57BL/6J mice were randomly assigned to untreated (U) or antibiotic-treated (T) non-running controls (CU or CT, respectively) or progressive weighted wheel running (PoWeR, P) untreated (PU) or antibiotic-treated (PT) groups. Antibiotic treatment resulted in disruption of the gut microbiome as indicated by a significant depletion of gut microbiome bacterial species in both CT and PT groups. The training stimulus was the same between PU and PT groups as assessed by weekly (12.35 ± 2.06 vs. 11.09 ± 1.76 km/week, respectively) and total (778.9 ± 130.5 vs. 703.8 ± 112.9 km, respectively) running activity. In response to PoWeR, PT showed less hypertrophy of soleus type 1 and 2a fibres and plantaris type 2b/x fibres compared to PU. The higher satellite cell and myonuclei abundance of PU plantaris muscle after PoWeR was not observed in PT. The fibre-type shift of PU plantaris muscle to a more oxidative type 2a fibre composition following PoWeR was blunted in PT. There was no difference in serum cytokine levels among all groups suggesting disruption of the gut microbiome did not induce systemic inflammation. The results of this study provide the first evidence that an intact gut microbiome is necessary for skeletal muscle adaptation to exercise. KEY POINTS: Dysbiosis of the gut microbiome caused by continuous antibiotic treatment did not affect running activity. Continuous treatment with antibiotics did not result in systemic inflammation as indicated by serum cytokine levels. Gut microbiome dysbiosis was associated with blunted fibre type-specific hypertrophy in the soleus and plantaris muscles in response to progressive weighted wheel running (PoWeR). Gut microbiome dysbiosis was associated with impaired PoWeR-induced fibre-type shift in the plantaris muscle. Gut microbiome dysbiosis was associated with a loss of PoWeR-induced myonuclei accretion in the plantaris muscle.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Músculo Esquelético
13.
J Physiol ; 599(13): 3363-3384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913170

RESUMO

KEY POINTS: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT: Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.


Assuntos
Epigênese Genética , Ribossomos , Animais , Humanos , Hipertrofia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
15.
Dev Med Child Neurol ; 63(10): 1204-1212, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34176131

RESUMO

AIM: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP). METHOD: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were analyzed with a focused query investigating metabolism- and mitochondria-related gene networks. RESULTS: The mtDNA to genomic DNA ratio was lower in the children with CP compared to the typically developing group (-23%, p=0.002). Out of five investigated complexes in the mitochondrial respiratory chain, we observed lower protein levels of all complexes (I, III, IV, V, -20% to -37%; p<0.05) except complex II. Total peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) messenger RNA (p<0.004), isoforms PGC1α1 (p=0.05), and PGC1α4 (p<0.001) were reduced in CP. Transcriptional similarities were observed between CP, aging, and 90 days' bed rest. INTERPRETATION: Mitochondrial biogenesis, mtDNA, and oxidative phosphorylation protein content are reduced in CP muscle compared with typically developing muscle. Transcriptional pathways shared between aging and long-term unloading suggests metabolic dysregulation in CP, which may guide therapeutic strategies for combatting CP muscle pathology. What this paper adds Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. Gene expression in CP muscle is similar to aging and long-term bed rest.


Assuntos
Paralisia Cerebral/genética , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Músculo Esquelético/metabolismo , Adolescente , Estudos de Casos e Controles , Paralisia Cerebral/metabolismo , Criança , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
16.
Am J Physiol Cell Physiol ; 318(6): C1178-C1188, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320286

RESUMO

To date, studies that have aimed to investigate the role of satellite cells during adult skeletal muscle adaptation and hypertrophy have utilized a nontranslational stimulus and/or have been performed over a relatively short time frame. Although it has been shown that satellite cell depletion throughout adulthood does not drive skeletal muscle loss in sedentary mice, it remains unknown how satellite cells participate in skeletal muscle adaptation to long-term physical activity. The current study was designed to determine whether reduced satellite cell content throughout adulthood would influence the transcriptome-wide response to physical activity and diminish the adaptive response of skeletal muscle. We administered vehicle or tamoxifen to adult Pax7-diphtheria toxin A (DTA) mice to deplete satellite cells and assigned them to sedentary or wheel-running conditions for 13 mo. Satellite cell depletion throughout adulthood reduced balance and coordination, overall running volume, and the size of muscle proprioceptors (spindle fibers). Furthermore, satellite cell participation was necessary for optimal muscle fiber hypertrophy but not adaptations in fiber type distribution in response to lifelong physical activity. Transcriptome-wide analysis of the plantaris and soleus revealed that satellite cell function is muscle type specific; satellite cell-dependent myonuclear accretion was apparent in oxidative muscles, whereas initiation of G protein-coupled receptor (GPCR) signaling in the glycolytic plantaris may require satellite cells to induce optimal adaptations to long-term physical activity. These findings suggest that satellite cells play a role in preserving physical function during aging and influence muscle adaptation during sustained periods of physical activity.


Assuntos
Fibras Musculares Esqueléticas/patologia , Condicionamento Físico Animal , Corrida , Células Satélites de Músculo Esquelético/patologia , Comportamento Sedentário , Adaptação Fisiológica , Animais , Toxina Diftérica/genética , Feminino , Regulação da Expressão Gênica , Glicólise , Hipertrofia , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fator de Transcrição PAX7/genética , Fragmentos de Peptídeos/genética , RNA não Traduzido/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Tempo
17.
Physiol Genomics ; 52(12): 575-587, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017228

RESUMO

As a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military-grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 mo. We found that most transcriptional changes occur at 1 and 3 mo after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 mo. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. These data suggest that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.


Assuntos
Expressão Gênica , Metais Pesados , Músculo Esquelético , Transcriptoma , Ferimentos Penetrantes/genética , Animais , Carcinógenos , Masculino , Modelos Animais , RNA/genética , RNA/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Fatores de Tempo
18.
Physiology (Bethesda) ; 34(1): 30-42, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540235

RESUMO

The ribosome is the enzymatic macromolecular machine responsible for protein synthesis. The rates of protein synthesis are primarily dependent on translational efficiency and capacity. Ribosome biogenesis has emerged as an important regulator of skeletal muscle growth and maintenance by altering the translational capacity of the cell. Here, we provide evidence to support a central role for ribosome biogenesis in skeletal muscle growth during postnatal development and in response to resistance exercise training. Furthermore, we discuss the cellular signaling pathways regulating ribosome biogenesis, discuss how myonuclear accretion affects translational capacity, and explore future areas of investigation within the field.


Assuntos
Hipertrofia/fisiopatologia , Músculo Esquelético/fisiopatologia , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Animais , Humanos , Desenvolvimento Muscular/fisiologia , Treinamento Resistido/métodos , Transdução de Sinais/fisiologia
19.
J Neurophysiol ; 124(6): 1571-1577, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052800

RESUMO

Changes to cerebral miRNA expression have been implicated in the progression of Alzheimer's disease (AD), as miRNAs that regulate the expression of gene products involved in amyloid beta (Aß) processing, such as BACE1, are dysregulated in those that suffer from AD. Exercise training improves cognition and reduces BACE1 and Aß-plaque burden; however, the mechanisms are not fully understood. Using our progressive weighted wheel running (PoWeR) exercise program, we assessed the effect of 20 wk of exercise training on changes in hippocampal miRNA expression in female 3xTg-AD (3xTg) mice. PoWeR was sufficient to promote muscle hypertrophy and increase myonuclear abundance. Furthermore, PoWeR elevated hippocampal Dicer gene expression in 3xTg mice, while altering miRNA expression toward a more wild-type profile. Specifically, miR-29, which is validated to target BACE1, was significantly lower in sedentary 3xTg mice when compared with wild-type but was elevated following PoWeR. Accordingly, BACE1 gene expression, along with detergent-soluble Aß1-42, was lower in PoWeR-trained 3xTg mice. Our data suggest that PoWeR training upregulates Dicer gene expression to alter cerebral miRNA expression, which may contribute to reduced Aß accumulation and delay AD progression.NEW & NOTEWORTHY Previous studies have outlined the beneficial effects of exercise on lowering BACE1 expression and reducing Aß plaques. This study extends upon the work of others by outlining a new potential mechanism by which exercise elicits beneficial effects on Alzheimer's disease pathology, specifically through modulation of Dicer and miRNA expression. This is the first study to examine Dicer and miRNA expression in the hippocampus of the 3xTg model within the context of exercise.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Fragmentos de Peptídeos/metabolismo , Condicionamento Físico Animal , Ribonuclease III/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos Transgênicos , Atividade Motora , RNA Mensageiro/metabolismo
20.
Am J Physiol Cell Physiol ; 317(6): C1247-C1255, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596607

RESUMO

The eukaryotic initiation factor 4E (eIF4E) is a major mRNA cap-binding protein that has a central role in translation initiation. Ser209 is the single phosphorylation site within eIF4E and modulates its activity in response to MAPK pathway activation. It has been reported that phosphorylation of eIF4E at Ser209 promotes translation of key mRNAs, such as cyclin D1, that regulate ribosome biogenesis. We hypothesized that phosphorylation at Ser209 is required for skeletal muscle growth in response to a hypertrophic stimulus by promoting ribosome biogenesis. To test this hypothesis, wild-type (WT) and eIF4E knocked-in (KI) mice were subjected to synergist ablation to induce muscle hypertrophy of the plantaris muscle as the result of mechanical overload; in the KI mouse, Ser209 of eIF4E was replaced with a nonphosphorylatable alanine. Contrary to our hypothesis, we observed no difference in the magnitude of hypertrophy between WT and KI groups in response to 14 days of mechanical overload induced by synergist ablation. Similarly, the increases in cyclin D1 protein levels, ribosome biogenesis, and translational capacity did not differ between WT and KI groups. Based on these findings, we conclude that phosphorylation of eIF4E at Ser209 is dispensable for skeletal muscle hypertrophy in response to mechanical overload.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Serina/metabolismo , Animais , Fenômenos Biomecânicos , Ciclina D1/genética , Ciclina D1/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Hipertrofia/metabolismo , Hipertrofia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA