Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 96(21): 8308-8316, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752543

RESUMO

Microbial biofilms represent an important lifestyle for bacteria and are dynamic three-dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable toward understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest from a single sample.


Assuntos
Biofilmes , GMP Cíclico , Pseudomonas aeruginosa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vibrio cholerae , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/análise , Pseudomonas aeruginosa/metabolismo , Vibrio cholerae/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aliivibrio fischeri/metabolismo
2.
Nat Chem Biol ; 18(3): 295-304, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969972

RESUMO

Major advances in genome sequencing and large-scale biosynthetic gene cluster (BGC) analysis have prompted an age of natural product discovery driven by genome mining. Still, connecting molecules to their cognate BGCs is a substantial bottleneck for this approach. We have developed a mass-spectrometry-based parallel stable isotope labeling platform, termed IsoAnalyst, which assists in associating metabolite stable isotope labeling patterns with BGC structure prediction to connect natural products to their corresponding BGCs. Here we show that IsoAnalyst can quickly associate both known metabolites and unknown analytes with BGCs to elucidate the complex chemical phenotypes of these biosynthetic systems. We validate this approach for a range of compound classes, using both the type strain Saccharopolyspora erythraea and an environmentally isolated Micromonospora sp. We further demonstrate the utility of this tool with the discovery of lobosamide D, a new and structurally unique member of the family of lobosamide macrolactams.


Assuntos
Produtos Biológicos , Micromonospora , Vias Biossintéticas/genética , Marcação por Isótopo , Família Multigênica
3.
Bioinformatics ; 38(16): 4046-4047, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758608

RESUMO

MOTIVATION: Advances in mass spectrometry have led to the development of mass spectrometers with ion mobility spectrometry capabilities and dual-source instrumentation; however, the current software ecosystem lacks interoperability with downstream data analysis using open-source software and pipelines. RESULTS: Here, we present TIMSCONVERT, a data conversion high-throughput workflow from timsTOF Pro/fleX mass spectrometer raw data files to mzML and imzML formats that incorporates ion mobility data while maintaining compatibility with data analysis tools. We showcase several examples using data acquired across different experiments and acquisition modalities on the timsTOF fleX MS. AVAILABILITY AND IMPLEMENTATION: TIMSCONVERT and its documentation can be found at https://github.com/gtluu/timsconvert and is available as a standalone command-line interface tool for Windows and Linux, NextFlow workflow and online in the Global Natural Products Social (GNPS) platform. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Software , Fluxo de Trabalho , Espectrometria de Massas/métodos , Análise de Dados
4.
J Nat Prod ; 82(7): 2009-2012, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244148

RESUMO

As part of an ongoing program to identify sex attractant pheromone components that mediate sexual communication in yellowjacket wasps, a novel sesquiterpene was isolated from body surface extracts of virgin bald-faced hornet queens, Dolichovespula maculata. The gross structure of this sesquiterpene was proposed through microscale spectroscopic analyses, and the configuration of the central olefin was subsequently confirmed by total synthesis. This new natural product (termed here dolichovespulide) represents an important addition to the relatively small number of terpenoids reported from the taxonomic insect family Vespidae.


Assuntos
Vespas/química , Animais , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Análise Espectral/métodos
5.
bioRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39131370

RESUMO

Site-selective vanadium-dependent haloperoxidases (VHPOs) are a unique enzyme family that catalyze selective halogenation reactions previously characterized within bacterial natural product biosynthetic pathways. However, the broader chemical roles and biological distribution of these halogenases remains to be explored. Using bioinformatic methods, we have defined a VHPO subfamily that regioselectively brominates alkyl quinolone (AQ) quorum sensing molecules. In vitro AQ halogenation activity was demonstrated from phylogenetically distinct bacteria lacking established AQ biosynthetic pathways and sourced from diverse environments. AQ-VHPOs show high sequence and biochemical similarities with negligible genomic synteny or biosynthetic gene cluster co-localization. Exposure of VHPO-containing microbes to synthetic AQs or established bacterial producers identifies the chemical and spatial response to subvert their bacteriostatic effects. The characterization of novel homologs from bacterial taxa without previously demonstrated vanadium enzymology suggests VHPO-mediated AQ bromination is a niche to manipulate the chemical ecology of microbial communities.

6.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873360

RESUMO

Microbial biofilms represent an important lifestyle for bacteria and are dynamic three dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable towards understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest in a single experiment.

7.
Methods Enzymol ; 665: 281-304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379438

RESUMO

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an appealing label-free method for imaging biological samples which focuses on the spatial distribution of chemical signals. This approach has been used to study the chemical ecology of microbes and can be applied to study the chemical responses of microbes to treatment with exogenous compounds. Specific conjugated cholic acids such as taurocholic acid (TCA), have been shown to inhibit biofilm formation in the enteric pathogen Vibrio cholerae and MALDI-IMS can be used to directly observe the chemical responses of V. cholerae biofilm colonies to treatment with TCA. A major challenge of MALDI-IMS is optimizing the sample preparation and drying for a particular growth condition and microbial strain. Here we demonstrate how V. cholerae is cultured and prepared for MALDI-IMS analysis and highlight critical steps to ensure proper sample adherence to a MALDI target plate and maintain spatial distributions when applying this technique to any microbial strain. We additionally show how to use both manual interrogation and statistical analyses of MALDI-IMS data to establish the adequacy of the sample preparation protocol. This protocol can serve as a guideline for the development of sample preparation techniques and the acquisition of high quality MALDI-IMS data.


Assuntos
Biofilmes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
ACS Cent Sci ; 5(11): 1824-1833, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807684

RESUMO

Despite rapid evolution in the area of microbial natural products chemistry, there is currently no open access database containing all microbially produced natural product structures. Lack of availability of these data is preventing the implementation of new technologies in natural products science. Specifically, development of new computational strategies for compound characterization and identification are being hampered by the lack of a comprehensive database of known compounds against which to compare experimental data. The creation of an open access, community-maintained database of microbial natural product structures would enable the development of new technologies in natural products discovery and improve the interoperability of existing natural products data resources. However, these data are spread unevenly throughout the historical scientific literature, including both journal articles and international patents. These documents have no standard format, are often not digitized as machine readable text, and are not publicly available. Further, none of these documents have associated structure files (e.g., MOL, InChI, or SMILES), instead containing images of structures. This makes extraction and formatting of relevant natural products data a formidable challenge. Using a combination of manual curation and automated data mining approaches we have created a database of microbial natural products (The Natural Products Atlas, www.npatlas.org) that includes 24 594 compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. This database is accompanied by an interactive web portal that permits searching by structure, substructure, and physical properties. The Web site also provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. These interactive tools offer a powerful knowledge base for natural products discovery with a central interface for structure and property-based searching and presents new viewpoints on structural diversity in natural products. The Natural Products Atlas has been developed under FAIR principles (Findable, Accessible, Interoperable, and Reusable) and is integrated with other emerging natural product databases, including the Minimum Information About a Biosynthetic Gene Cluster (MIBiG) repository, and the Global Natural Products Social Molecular Networking (GNPS) platform. It is designed as a community-supported resource to provide a central repository for known natural product structures from microorganisms and is the first comprehensive, open access resource of this type. It is expected that the Natural Products Atlas will enable the development of new natural products discovery modalities and accelerate the process of structural characterization for complex natural products libraries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA