Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(10): e21867, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499764

RESUMO

Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/fisiologia , Dieta Hiperlipídica/efeitos adversos , Lipidômica/métodos , Lisofosfatidilcolinas/toxicidade , Músculo Esquelético/patologia , Doenças Musculares/patologia , Obesidade/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/etiologia , Doenças Musculares/metabolismo
2.
Exerc Sport Sci Rev ; 49(4): 267-273, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091499

RESUMO

Breast Cancer gene 1 (BRCA1) is a large, multifunctional protein that regulates a variety of mechanisms in multiple different tissues. Our work established that Brca1 is expressed in skeletal muscle and localizes to the mitochondria and nucleus. Here, we propose BRCA1 expression is critical for the maintenance of force production and mitochondrial respiration in skeletal muscle.


Assuntos
Neoplasias da Mama , Músculo Esquelético , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Feminino , Instabilidade Genômica , Humanos , Mitocôndrias , Músculo Esquelético/metabolismo
3.
Vasc Med ; 26(3): 247-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33685287

RESUMO

Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.


Assuntos
Isquemia Crônica Crítica de Membro , Doença Arterial Periférica , Adulto , Amputação Cirúrgica , Estado Terminal , Humanos , Isquemia/diagnóstico , Isquemia/genética , Isquemia/cirurgia , Salvamento de Membro , Músculo Esquelético/cirurgia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/genética , Doença Arterial Periférica/cirurgia , Fatores Raciais , Fatores de Risco , Resultado do Tratamento
4.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769940

RESUMO

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Assuntos
Sistema Cardiovascular , Educação/métodos , Insuficiência Cardíaca/terapia , Mitocôndrias/fisiologia , National Heart, Lung, and Blood Institute (U.S.) , Relatório de Pesquisa , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Sistema Cardiovascular/patologia , Educação/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologia
5.
Biochem J ; 476(10): 1521-1537, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31092703

RESUMO

Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


Assuntos
Trifosfato de Adenosina/metabolismo , Bicarbonatos/metabolismo , Cetoácidos/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Masculino , Camundongos , Especificidade de Órgãos , Oxirredução
6.
J Physiol ; 597(3): 869-887, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556208

RESUMO

KEY POINTS: Breast cancer 1 early onset gene codes for the DNA repair enzyme, breast cancer type 1 susceptibility protein (BRCA1). The gene is prone to mutations that cause a loss of protein function. BRCA1/Brca1 has recently been found to regulate several cellular pathways beyond DNA repair and is expressed in skeletal muscle. Skeletal muscle specific knockout of Brca1 in mice caused a loss of muscle quality, identifiable by reductions in muscle force production and mitochondrial respiratory capacity. Loss of muscle quality was associated with a shift in muscle phenotype and an accumulation of mitochondrial DNA mutations. These results demonstrate that BRCA1 is necessary for skeletal muscle function and that increased mitochondrial DNA mutations may represent a potential underlying mechanism. ABSTRACT: Recent evidence suggests that the breast cancer 1 early onset gene (BRCA1) influences numerous peripheral tissues, including skeletal muscle. The present study aimed to determine whether induced-loss of the breast cancer type 1 susceptibility protein (Brca1) alters skeletal muscle function. We induced genetic ablation of exon 11 in the Brca1 gene specifically in the skeletal muscle of adult mice to generate skeletal muscle-specific Brca1 homozygote knockout (Brca1KOsmi ) mice. Brca1KOsmi exhibited kyphosis and decreased maximal isometric force in limb muscles compared to age-matched wild-type mice. Brca1KOsmi skeletal muscle shifted toward an oxidative muscle fibre type and, in parallel, increased myofibre size and reduced capillary numbers. Unexpectedly, myofibre bundle mitochondrial respiration was reduced, whereas contraction-induced lactate production was elevated in Brca1KOsmi muscle. Brca1KOsmi mice accumulated mitochondrial DNA mutations and exhibited an altered mitochondrial morphology characterized by distorted and enlarged mitochondria, and these were more susceptible to swelling. In summary, skeletal muscle-specific loss of Brca1 leads to a myopathy and mitochondriopathy characterized by reductions in skeletal muscle quality and a consequent kyphosis. Given the substantial impact of BRCA1 mutations on cancer development risk in humans, a parallel loss of BRCA1 function in patient skeletal muscle cells would potentially result in implications for human health.


Assuntos
Proteína BRCA1/genética , Mitocôndrias Musculares/patologia , Debilidade Muscular/genética , Músculo Esquelético/patologia , Animais , DNA Mitocondrial/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética
7.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256393

RESUMO

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Assuntos
Cardiomiopatias/metabolismo , Metabolismo Energético , Infecções por HIV/complicações , HIV-1/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Cardiomiopatias/virologia , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Infecções por HIV/virologia , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/virologia , Contração Miocárdica , Miócitos Cardíacos/virologia , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Função Ventricular Esquerda
8.
Am J Pathol ; 188(5): 1246-1262, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454751

RESUMO

Limited efficacy of clinical interventions for peripheral arterial disease necessitates a better understanding of the environmental and genetic determinants of tissue pathology. Existing research has largely ignored the early skeletal muscle injury response during hind limb ischemia (HLI). We compared the hind limb muscle response, after 6 hours of ischemia, in two mouse strains that differ dramatically in their postischemic extended recovery: C57BL/6J and BALB/cJ. Perfusion, measured by laser Doppler and normalized to the control limb, differed only slightly between strains after HLI (<12% across all measures). Similar (<10%) effect sizes in lectin-perfused vessel area and no differences in tissue oxygen saturation measured by reflectance spectroscopy were also found. Muscles from both strains were functionally impaired after HLI, but greater muscle necrosis and loss of dystrophin-positive immunostaining were observed in BALB/cJ muscle compared with C57BL/6J. Muscle cell-specific dystrophin loss and reduced viability were also detected in additional models of ischemia that were independent of residual perfusion differences. Our results indicate that factors other than the completeness of ischemia alone (ie, background genetics) influence the magnitude of acute ischemic muscle injury. These findings may have implications for future development of therapeutic interventions for limb ischemia and for understanding the phasic etiology of chronic and acute ischemic muscle pathophysiology.


Assuntos
Membro Posterior/patologia , Isquemia/patologia , Músculo Esquelético/patologia , Animais , Sobrevivência Celular/fisiologia , Distrofina/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiopatologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Especificidade da Espécie
9.
FASEB J ; 32(6): 3070-3084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401626

RESUMO

The breast cancer type 1 susceptibility protein (Brca1) is a regulator of DNA repair in mammary gland cells; however, recent cell culture evidence suggests that Brca1 influences other processes, including those in nonmammary cells. In this study, we sought to determine whether Brca1 is necessary for metabolic regulation of skeletal muscle using a novel in vivo mouse model. We developed an inducible skeletal muscle-specific Brca1knockout (BRCA1KOsmi) model to test whether Brca1 expression is necessary for maintenance of metabolic function of skeletal muscle when exposed to a high-fat diet (HFD). Our data demonstrated that deletion of Brca1 prevented HFD-induced alterations in glucose and insulin tolerance. Irrespective of diet, BRCA1KOsmi mice exhibited significantly lower ADP-stimulated complex I mitochondrial respiration rates compared to age-matched wild-type (WT) mice. The data show that Brca1 has the ability to localize to the mitochondria in skeletal muscle and that BRCA1KOsmi mice exhibit higher whole-body CO2 production, respiratory exchange ratio, and energy expenditure, compared with the WT mice. Our results demonstrate that loss of Brca1 in skeletal muscle leads to dysregulated metabolic function, characterized by decreased mitochondrial respiration. Thus, any condition that results in loss of Brca1 function could induce metabolic imbalance in skeletal muscle.-Jackson, K. C., Tarpey, M. D., Valencia, A. P., Iñigo, M. R., Pratt, S. J., Patteson, D. J., McClung, J. M., Lovering, R. M., Thomson, D. M., Spangenburg, E. E. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet.


Assuntos
Gorduras na Dieta/efeitos adversos , Técnicas de Silenciamento de Genes , Intolerância à Glucose/prevenção & controle , Integrases , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Proteínas Supressoras de Tumor/deficiência , Animais , Proteína BRCA1 , Gorduras na Dieta/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Proteínas Supressoras de Tumor/metabolismo
10.
Neurourol Urodyn ; 38(6): 1524-1532, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31074529

RESUMO

AIMS: To assess the impact of chronic high-fat diet (HFD) on behavioral voiding patterns, detrusor contractility, and smooth muscle mitochondrial function in male mice. MATERIALS AND METHODS: Male C57BL/6J mice (6 weeks) were fed a control or HFD for 20 weeks. Bladder function was assessed by void spot assays. Bladders were collected and detrusor contractility to carbachol (10-9 -10-5 M), and electrical field stimulation (EFS, 0.5-32 Hz) in the presence and absence of atropine was measured. Homogenized detrusor samples were placed in oxygraphs to assess the rate of oxygen consumption of the mitochondria within the detrusor in the presence of different substrates. Mitochondrial hydrogen peroxide (H2 O2 ) emission was measured fluorometrically. Detrusor citrate synthase activity was measured via enzyme activity kit and Western blots assessed the electron transport chain (ETC) protein content. RESULTS: HFD significantly increased body weight, adiposity, and blood glucose levels. HFD mice demonstrated increased voiding frequency and increased EFS-induced detrusor contractility. There were no changes in detrusor relaxation or cholinergic-medicated contraction. Mitochondrial respiration was decreased with HFD and H2 O 2 emission was increased. The relative amount of mitochondria in the detrusor was similar between groups. However, ETC complexes V and III were increased following HFD. CONCLUSIONS: Chronic HFD increased adiposity, lead to more frequent voiding, and enhanced EFS-mediated detrusor contractions. Mitochondrial respiration was decreased and H2 O 2 emission increased following HFD. Further research is required to determine if alterations in mitochondrial function could play a role in the development of HFD-induced bladder dysfunction.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Musculares/metabolismo , Bexiga Urinária/fisiopatologia , Adiposidade , Animais , Carbacol/farmacologia , Estimulação Elétrica , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Consumo de Oxigênio , Bexiga Urinária/metabolismo , Urodinâmica/efeitos dos fármacos
11.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28493473

RESUMO

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Assuntos
Metabolismo Energético , HIV-1/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Autofagia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Potenciais da Membrana , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/virologia , Mitofagia , Miócitos Cardíacos/virologia , Fosforilação Oxidativa , Cultura Primária de Células , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Fatores de Tempo
12.
J Cell Physiol ; 233(9): 6319-6326, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29323723

RESUMO

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Adrenérgicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Insuficiência Cardíaca/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo
13.
Circulation ; 136(3): 281-296, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28442482

RESUMO

BACKGROUND: Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1, that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. METHODS: We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. RESULTS: We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6-Lsq1-3). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3Ile81, but not BAG3Met81, improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3Ile81 (n=9), but not BAG3Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3Met81, BAG3Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. CONCLUSIONS: Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle function in the setting of ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Variação Genética/genética , Membro Posterior/irrigação sanguínea , Isquemia/genética , Doenças Musculares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Transformada , Membro Posterior/patologia , Isquemia/patologia , Isquemia/prevenção & controle , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Doenças Musculares/patologia , Doenças Musculares/prevenção & controle , Ligação Proteica/fisiologia
14.
Biochem Biophys Res Commun ; 504(4): 742-748, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217445

RESUMO

The progeroid phenotype of mitochondrial DNA (mtDNA) mutator mice has been nebulously attributed to general mitochondrial 'dysfunction', though few studies have rigorously defined the bioenergetic consequences of accumulating mtDNA mutations. Comprehensive mitochondrial diagnostics was employed to interrogate the bioenergetic properties of isolated cardiac mitochondria from mtDNA mutator mice and wild type littermates. Assessment of respiratory flux in conjunction with parallel measurements of mitochondrial free energy all point to the cause of respiratory flux limitations observed in mtDNA mutator mouse mitochondria being due to impairments within the energy transduction step catalyzed by the electron transport system in which NADH/NAD+ free energy is transduced to the proton motive force (ΔP). The primary bioenergetic consequence of this limitation appears to be hyper-reduction of NAD(P)H/NAD(P)+ redox poise across multiple substrate conditions, particularly evident at moderate to high respiration rates. This hyper-reduced phenotype appears to result from specific reductions in both complex I and complex IV expression, presumably due to compromised mtDNA integrity. Translation of these findings to the working heart would suggest that the primary biological consequence of accumulated mtDNA damage is accelerated electron leak driven by an increase in electron redox pressure for a given rate of oxygen consumption.


Assuntos
Reparo do DNA , DNA Mitocondrial/genética , Metabolismo Energético/genética , Miocárdio/metabolismo , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mutação , Oxirredução , Consumo de Oxigênio/genética , Fenótipo
15.
J Vasc Surg ; 65(5): 1504-1514.e11, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28024849

RESUMO

OBJECTIVE: Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD. METHODS: Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function. RESULTS: Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains. CONCLUSIONS: Ischemia-susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers.


Assuntos
Isquemia/metabolismo , Isquemia/fisiopatologia , Mitocôndrias Musculares/metabolismo , Contração Muscular , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Animais , Respiração Celular , Modelos Animais de Doenças , Genótipo , Membro Posterior , Isquemia/genética , Isquemia/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/patologia , Desenvolvimento Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Fenótipo , Regeneração , Fluxo Sanguíneo Regional , Especificidade da Espécie , Fatores de Tempo
16.
J Mol Cell Cardiol ; 97: 191-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262673

RESUMO

Critical limb ischemia is a devastating manifestation of peripheral arterial disease with no effective strategies for improving morbidity and mortality outcomes. We tested the hypothesis that cellular mitochondrial function is a key component of limb pathology and that improving mitochondrial function represents a novel paradigm for therapy. BALB/c mice were treated with a therapeutic mitochondrial-targeting peptide (MTP-131) and subjected to limb ischemia (HLI). Compared to vehicle control, MTP-131 rescued limb muscle capillary density and blood flow (64.7±11% of contralateral vs. 39.9±4%), and improved muscle regeneration. MTP-131 also increased electron transport system flux across all conditions at HLI day-7. In vitro, primary muscle cells exposed to experimental ischemia demonstrated markedly reduced (~75%) cellular respiration, which was rescued by MTP-131 during a recovery period. Compared to muscle cells, endothelial cell (HUVEC) respiration was inherently protected from ischemia (~30% reduction), but was also enhanced by MTP-131. These findings demonstrate an important link between ischemic tissue bioenergetics and limb blood flow and indicate that the mitochondria may be a pharmaceutical target for therapeutic intervention during critical limb ischemia.


Assuntos
Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Isquemia/complicações , Isquemia/metabolismo , Mitocôndrias Musculares/metabolismo , Doenças Musculares/etiologia , Animais , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais , Humanos , Masculino , Camundongos , Doenças Musculares/patologia , Doenças Musculares/terapia , Necrose , Oligopeptídeos/farmacologia , Peptídeos/farmacologia
17.
Am J Physiol Heart Circ Physiol ; 310(10): H1360-70, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945082

RESUMO

Mitochondria influence cardiac electrophysiology through energy- and redox-sensitive ion channels in the sarcolemma, with the collapse of energetics believed to be centrally involved in arrhythmogenesis. This study was conducted to determine if preservation of mitochondrial membrane potential (ΔΨm) contributes to the antiarrhythmic effect of exercise. We utilized perfused hearts, isolated myocytes, and isolated mitochondria exposed to metabolic challenge to determine the effects of exercise on cardiac mitochondria. Hearts from sedentary (Sed) and exercised (Ex; 10 days of treadmill running) Sprague-Dawley rats were perfused on a two-photon microscope stage for simultaneous measurement of ΔΨm and ECG. After ischemia-reperfusion, the collapse of ΔΨm was commensurate with the onset of arrhythmia. Exercise preserved ΔΨm and decreased the incidence of fibrillation/tachycardia (P < 0.05). Our findings in intact hearts were corroborated in isolated myocytes exposed to in vitro hypoxia-reoxygenation, with Ex rats demonstrating enhanced redox control and sustained ΔΨm during reoxygenation. Finally, we induced anoxia-reoxygenation in isolated mitochondria using high-resolution respirometry with simultaneous measurement of respiration and H2O2 Mitochondria from Ex rats sustained respiration with lower rates of H2O2 emission than Sed rats. Exercise helps sustain postischemic mitochondrial bioenergetics and redox homeostasis, which is associated with preserved ΔΨm and protection against reperfusion arrhythmia. The reduction of fatal ventricular arrhythmias through exercise-induced mitochondrial adaptations indicates that mitochondrial therapeutics may be an effective target for the treatment of heart disease.


Assuntos
Arritmias Cardíacas/prevenção & controle , Metabolismo Energético , Terapia por Exercício/métodos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Glutationa/metabolismo , Frequência Cardíaca , Preparação de Coração Isolado , Masculino , Potencial da Membrana Mitocondrial , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo , Esforço Físico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Corrida , Fatores de Tempo
18.
J Vasc Surg ; 64(4): 1101-1111.e2, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254821

RESUMO

OBJECTIVE: The primary preclinical model of peripheral artery disease, which involves acute limb ischemia (ALI), can result in appreciable muscle injury that is attributed to the acuity of the ischemic injury. A less acute model of murine limb ischemia using ameroid constrictors (ACs) has been developed in an attempt to mimic the chronic nature of human disease. However, there is currently little understanding of how genetics influence muscle injury following subacute arterial occlusion in the mouse. METHODS: We investigated the influence of mouse genetics on skeletal muscle tissue survival, blood flow, and vascular density by subjecting two different mouse strains, C57BL/6 (BL6) and BALB/c, to ALI or subacute limb ischemia using single (1AC) or double (2AC) AC placement on the femoral artery. RESULTS: Similar to ALI, the 2AC model resulted in significant tissue necrosis and limb perfusion deficits in genetically susceptible BALB/c but not BL6 mice. In the 1AC model, no outward evidence of tissue necrosis was observed, and there were no differences in limb blood flow between BL6 and BALB/c. However, BALB/c mice displayed significantly greater muscle injury, as evidenced by increased inflammation and myofiber atrophy, despite having no differences in CD31(+) and SMA(+) vascular density and area. BALB/c mice also displayed significantly greater centralized myonuclei, indicating increased muscle regeneration. CONCLUSIONS: The susceptibility of skeletal muscle to ischemia-induced injury is at least partly independent of muscle blood flow and vascular density, consistent with a muscle cell autonomous response that is genetically determined. Further development of preclinical models of peripheral artery disease that more accurately reflect the nature of the human disease may allow more accurate identification of genetic targets for therapeutic intervention.


Assuntos
Isquemia/genética , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Neovascularização Fisiológica , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Artéria Femoral/cirurgia , Predisposição Genética para Doença , Membro Posterior , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Ligadura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Necrose , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Regeneração , Fluxo Sanguíneo Regional , Especificidade da Espécie , Fatores de Tempo
19.
Am J Physiol Regul Integr Comp Physiol ; 308(7): R576-89, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25608750

RESUMO

Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.


Assuntos
Angiopoietina-1/metabolismo , Terapia Genética/métodos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Regeneração , Adenoviridae/genética , Adulto , Angiopoietina-1/genética , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Cardiotoxinas , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Mioblastos/metabolismo , Mioblastos/patologia , Necrose , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA