Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 598(7879): 82-85, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616056

RESUMO

New Zealand was among the last habitable places on earth to be colonized by humans1. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Maori settlement2, but the precise timing and magnitude of associated biomass-burning emissions are unknown1,3, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica4. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling5 demonstrates that the observed deposition could result only from increased emissions poleward of 40° S-implicating fires in Tasmania, New Zealand and Patagonia-but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Maori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y-1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia6,7, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.


Assuntos
Incêndios/história , Atividades Humanas/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/história , Fuligem/análise , Atmosfera/química , Biomassa , História do Século XV , História do Século XVI , História Medieval , Humanos , Nova Zelândia , Tasmânia
2.
Nature ; 569(7757): 551-555, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061499

RESUMO

Marine phytoplankton have a crucial role in the modulation of marine-based food webs1, fishery yields2 and the global drawdown of atmospheric carbon dioxide3. However, owing to sparse measurements before satellite monitoring in the twenty-first century, the long-term response of planktonic stocks to climate forcing is unknown. Here, using a continuous, multi-century record of subarctic Atlantic marine productivity, we show that a marked 10 ± 7% decline in net primary productivity has occurred across this highly productive ocean basin over the past two centuries. We support this conclusion by the application of a marine-productivity proxy, established using the signal of the planktonic-derived aerosol methanesulfonic acid, which is commonly identified across an array of Greenlandic ice cores. Using contemporaneous satellite-era observations, we demonstrate the use of this signal as a robust and high-resolution proxy for past variations in spatially integrated marine productivity. We show that the initiation of declining subarctic Atlantic productivity broadly coincides with the onset of Arctic surface warming4, and that productivity strongly covaries with regional sea-surface temperatures and basin-wide gyre circulation strength over recent decades. Taken together, our results suggest that the decline in industrial-era productivity may be evidence of the predicted5 collapse of northern Atlantic planktonic stocks in response to a weakened Atlantic Meridional Overturning Circulation6-8. Continued weakening of this Atlantic Meridional Overturning Circulation, as projected for the twenty-first century9,10, may therefore result in further productivity declines across this globally relevant region.


Assuntos
Organismos Aquáticos/metabolismo , Cadeia Alimentar , Fitoplâncton/metabolismo , Movimentos da Água , Animais , Regiões Árticas , Oceano Atlântico , Atmosfera/química , Pesqueiros , Aquecimento Global , Groenlândia , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Água do Mar/análise
3.
Nature ; 564(7734): 104-108, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518887

RESUMO

The Greenland ice sheet (GrIS) is a growing contributor to global sea-level rise1, with recent ice mass loss dominated by surface meltwater runoff2,3. Satellite observations reveal positive trends in GrIS surface melt extent4, but melt variability, intensity and runoff remain uncertain before the satellite era. Here we present the first continuous, multi-century and observationally constrained record of GrIS surface melt intensity and runoff, revealing that the magnitude of recent GrIS melting is exceptional over at least the last 350 years. We develop this record through stratigraphic analysis of central west Greenland ice cores, and demonstrate that measurements of refrozen melt layers in percolation zone ice cores can be used to quantifiably, and reproducibly, reconstruct past melt rates. We show significant (P < 0.01) and spatially extensive correlations between these ice-core-derived melt records and modelled melt rates5,6 and satellite-derived melt duration4 across Greenland more broadly, enabling the reconstruction of past ice-sheet-scale surface melt intensity and runoff. We find that the initiation of increases in GrIS melting closely follow the onset of industrial-era Arctic warming in the mid-1800s, but that the magnitude of GrIS melting has only recently emerged beyond the range of natural variability. Owing to a nonlinear response of surface melting to increasing summer air temperatures, continued atmospheric warming will lead to rapid increases in GrIS runoff and sea-level contributions.

4.
Nature ; 563(7733): 681-685, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487614

RESUMO

The mid-latitude westerly winds of the Southern Hemisphere play a central role in the global climate system via Southern Ocean upwelling1, carbon exchange with the deep ocean2, Agulhas leakage (transport of Indian Ocean waters into the Atlantic)3 and possibly Antarctic ice-sheet stability4. Meridional shifts of the Southern Hemisphere westerly winds have been hypothesized to occur5,6 in parallel with the well-documented shifts of the intertropical convergence zone7 in response to Dansgaard-Oeschger (DO) events- abrupt North Atlantic climate change events of the last ice age. Shifting moisture pathways to West Antarctica8 are consistent with this view but may represent a Pacific teleconnection pattern forced from the tropics9. The full response of the Southern Hemisphere atmospheric circulation to the DO cycle and its impact on Antarctic temperature remain unclear10. Here we use five ice cores synchronized via volcanic markers to show that the Antarctic temperature response to the DO cycle can be understood as the superposition of two modes: a spatially homogeneous oceanic 'bipolar seesaw' mode that lags behind Northern Hemisphere climate by about 200 years, and a spatially heterogeneous atmospheric mode that is synchronous with abrupt events in the Northern Hemisphere. Temperature anomalies of the atmospheric mode are similar to those associated with present-day Southern Annular Mode variability, rather than the Pacific-South American pattern. Moreover, deuterium-excess records suggest a zonally coherent migration of the Southern Hemisphere westerly winds over all ocean basins in phase with Northern Hemisphere climate. Our work provides a simple conceptual framework for understanding circum-Antarctic temperature variations forced by abrupt Northern Hemisphere climate change. We provide observational evidence of abrupt shifts in the Southern Hemisphere westerly winds, which have previously documented1-3 ramifications for global ocean circulation and atmospheric carbon dioxide. These coupled changes highlight the necessity of a global, rather than a purely North Atlantic, perspective on the DO cycle.

5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518222

RESUMO

Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope-enabled climate model simulations and a wide array of mean annual water isotope ([Formula: see text]O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE.

6.
Nature ; 612(7941): E20-E21, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543950
7.
Proc Natl Acad Sci U S A ; 117(42): 26061-26068, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32989145

RESUMO

The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is >7,000 km from Ilopango; and calculated that between 37 and 82 km3 of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.

8.
Proc Natl Acad Sci U S A ; 117(27): 15443-15449, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571905

RESUMO

The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.


Assuntos
Mudança Climática/história , Clima Frio/efeitos adversos , Desastres/história , Mundo Romano/história , Erupções Vulcânicas/efeitos adversos , Alaska , Clima , Produtos Agrícolas/história , Fome Epidêmica/história , História Antiga , Camada de Gelo , Região do Mediterrâneo , Política , Erupções Vulcânicas/história
9.
Proc Natl Acad Sci U S A ; 116(30): 14910-14915, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285330

RESUMO

Lead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution. Temporal variability was surprisingly similar across the large swath of the Arctic represented by the array, with 250- to 300-fold increases in lead pollution observed from the Early Middle Ages to the 1970s industrial peak. Superimposed on these exponential changes were pronounced, multiannual to multidecadal variations, marked by increases coincident with exploitation of new mining regions, improved technologies, and periods of economic prosperity; and decreases coincident with climate disruptions, famines, major wars, and plagues. Results suggest substantial overall growth in lead/silver mining and smelting emissions-and so silver production-from the Early through High Middle Ages, particularly in northern Europe, with lower growth during the Late Middle Ages into the Early Modern Period. Near the end of the second plague pandemic (1348 to ∼1700 CE), lead pollution increased sharply through the Industrial Revolution. North American and European pollution abatement policies have reduced Arctic lead pollution by >80% since the 1970s, but recent levels remain ∼60-fold higher than at the start of the Middle Ages.

10.
Proc Natl Acad Sci U S A ; 115(48): 12136-12141, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420500

RESUMO

Iodine is an important nutrient and a significant sink of tropospheric ozone, a climate-forcing gas and air pollutant. Ozone interacts with seawater iodide, leading to volatile inorganic iodine release that likely represents the largest source of atmospheric iodine. Increasing ozone concentrations since the preindustrial period imply that iodine chemistry and its associated ozone destruction is now substantially more active. However, the lack of historical observations of ozone and iodine means that such estimates rely primarily on model calculations. Here we use seasonally resolved records from an Alpine ice core to investigate 20th century changes in atmospheric iodine. After carefully considering possible postdepositional changes in the ice core record, we conclude that iodine deposition over the Alps increased by at least a factor of 3 from 1950 to the 1990s in the summer months, with smaller increases during the winter months. We reproduce these general trends using a chemical transport model and show that they are due to increased oceanic iodine emissions, coupled to a change in iodine speciation over Europe from enhanced nitrogen oxide emissions. The model underestimates the increase in iodine deposition by a factor of 2, however, which may be due to an underestimate in the 20th century ozone increase. Our results suggest that iodine's impact on the Northern Hemisphere atmosphere accelerated over the 20th century and show a coupling between anthropogenic pollution and the availability of iodine as an essential nutrient to the terrestrial biosphere.


Assuntos
Poluentes Atmosféricos/química , Gelo/análise , Iodo/química , Água do Mar/química , Atmosfera , Clima , Europa (Continente) , Ozônio/química , Estações do Ano
11.
Proc Natl Acad Sci U S A ; 115(22): 5726-5731, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760088

RESUMO

Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead-silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.


Assuntos
Poluentes Ambientais , Gelo/análise , Chumbo , Mundo Romano/história , Conflitos Armados/história , Surtos de Doenças/história , Poluentes Ambientais/análise , Poluentes Ambientais/história , Indústrias Extrativas e de Processamento/história , Groenlândia , História Antiga , Humanos , Chumbo/análise , Chumbo/história , Prata/história
12.
Nature ; 514(7524): 616-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355363

RESUMO

Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles. The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination (23,000 to 9,000 years ago), however, remains uncertain. Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination, given the strong covariance of CO2 levels and Antarctic temperatures. Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.


Assuntos
Ciclo do Carbono , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Groenlândia , História Antiga , Camada de Gelo , Isótopos , Metano/análise , Oceanos e Mares , Água/análise , Água/química
13.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874529

RESUMO

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

14.
Environ Sci Technol ; 53(10): 5887-5894, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31070370

RESUMO

Measurement of elemental concentrations in ice cores are critical for determining atmospheric aerosol variations. For such measurements, acidified ice-core meltwater typically is analyzed continuously (<5 min after acidification) or discretely (∼3 months after acidification). The reduced acidification time during continuous analysis may result in a measured elemental concentration that is lower than the concentration of discrete analysis if particulates are not fully dissolved. To evaluate this, sections of three ice cores from Greenland and Antarctica were measured both continuously (4.5 min after acidification) and discretely (repeatedly from 1 to 151 days after continuous measurements), with discrete samples collected from the meltwater sample stream prior to continuous measurement. We show that elements such as Na, Sr, and S dissolved readily and therefore were fully recovered during continuous measurements. Average recovery for other elements was between 70 to 100% for Cd, Gd, Mg, Mn, U, and Yb, 50 to 90% for Ca, Ce, Sm, and V, and less than 50% for Al, Fe, and La. Given the advantages of continuous measurements, we conclude that the preferred method for ice-core measurements is continuous analysis with simultaneous discrete sample collection, followed by adjustment of the continuous measurements based on discrete sample analysis at least 3 months after acidification.


Assuntos
Gelo , Regiões Antárticas , Groenlândia , Gelo/análise , Íons
15.
Glob Chang Biol ; 24(5): 2182-2197, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29322639

RESUMO

We present the first long-term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. The time series also revealed a ~1,500-year periodicity with greater amplitude during the Last Deglaciation (LDG). Higher prokaryotic cell concentration and lower variability occurred during the LGM and EH than during the LDG. A sevenfold decrease in prokaryotic cell concentration coincided with the LGM/LDG transition and the global 19 ka meltwater pulse. Statistical models revealed significant relationships between the prokaryotic cell record and tracers of both marine (sea-salt sodium [ssNa]) and burning emissions (black carbon [BC]). Collectively, these models, together with visual observations and methanosulfidic acid (MSA) measurements, indicated that the temporal variability in concentration of airborne prokaryotic cells reflected changes in marine/sea-ice regional environments of the WAIS. Our data revealed that variations in source and transport were the most likely processes producing the significant temporal variations in WD prokaryotic cell concentrations. This record provided strong evidence that airborne prokaryotic cell deposition differed during the LGM, LDG, and EH, and that these changes in cell densities could be explained by different environmental conditions during each of these climatic periods. Our observations provide the first ice-core time series evidence for a prokaryotic response to long-term climatic and environmental processes.


Assuntos
Archaea/classificação , Bactérias/classificação , Camada de Gelo/microbiologia , Regiões Antárticas , História Antiga , Modelos Teóricos , Sódio , Fatores de Tempo
17.
Environ Sci Technol ; 51(8): 4230-4238, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28375598

RESUMO

The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.


Assuntos
Camada de Gelo , Árvores , Isótopos , Mercúrio , Água
18.
Proc Natl Acad Sci U S A ; 111(22): 7964-7, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843158

RESUMO

In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.


Assuntos
Mudança Climática , Incêndios , Aquecimento Global , Camada de Gelo , Árvores , Regiões Árticas , Carbono , Congelamento , Groenlândia , Neve
19.
Sci Total Environ ; 912: 169431, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142989

RESUMO

Records from polar and alpine ice reflect past changes in background and industrial toxic heavy metal emissions. While Northern Hemisphere records have been used to evaluate environmental effects and linkages to historical events such as foreign conquests, plagues, economic downturns, and technological developments during the past three millennia, little is known about the magnitude and environmental effects of such emissions in the Southern Hemisphere or their historical linkages, especially prior to late 19th century industrialization. Here we used detailed measurements of the toxic heavy metals lead, cadmium, and thallium, as well as non-toxic bismuth, cerium, and sulfur in an array of five East Antarctic ice cores to investigate hemispheric-scale pollution during the Common Era. While thallium showed no anthropogenic increases, the other three metals increased by orders of magnitude in recent centuries after accounting for crustal and volcanic components. These first detailed records indicate that East Antarctic lead pollution started in the 13th century coincident with Late Intermediate Period metallurgy in the Andes and was pervasive during the Spanish Colonial period in parallel with large-scale exploitation of Andean silver and other ore deposits. Lead isotopic variations suggest that 19th-century increases in lead, cadmium, and bismuth resulted from Australian lead and Bolivian tin mining emissions, with 20th century pollution largely the result of the latter. As in the Northern Hemisphere, variations in heavy metal pollution coincided with plagues, cultural and technological developments, as well as global economic and political events including the Great Depression and the World Wars. Estimated atmospheric heavy metal emissions from Spanish Colonial-era mining and smelting during the late 16th and early 17th century were comparable to estimated European emissions during the 1st-century apex of the Roman Empire, with atmospheric model simulations suggesting hemispheric-scale toxic heavy metal pollution during the past five centuries as a result.

20.
Nat Commun ; 15(1): 3651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688918

RESUMO

Estimating fire emissions prior to the satellite era is challenging because observations are limited, leading to large uncertainties in the calculated aerosol climate forcing following the preindustrial era. This challenge further limits the ability of climate models to accurately project future climate change. Here, we reconstruct a gridded dataset of global biomass burning emissions from 1750 to 2010 using inverse analysis that leveraged a global array of 31 ice core records of black carbon deposition fluxes, two different historical emission inventories as a priori estimates, and emission-deposition sensitivities simulated by the atmospheric chemical transport model GEOS-Chem. The reconstructed emissions exhibit greater temporal variabilities which are more consistent with paleoclimate proxies. Our ice core constrained emissions reduced the uncertainties in simulated cloud condensation nuclei and aerosol radiative forcing associated with the discrepancy in preindustrial biomass burning emissions. The derived emissions can also be used in studies of ocean and terrestrial biogeochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA