Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 548(7667): 313-317, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783723

RESUMO

Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

2.
Phys Rev Lett ; 121(20): 207001, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500239

RESUMO

We present a combined experimental and theoretical study of the evolution of the Fermi surface of the anomalous superconductor Pb_{1-x}Tl_{x}Te as a function of thallium concentration, drawing on a combination of magnetotransport measurements (Shubnikov-de Haas oscillations and the Hall coefficient), angle resolved photoemission spectroscopy, and density functional theory calculations of the electronic structure. Our results indicate that for Tl concentrations beyond a critical value, the Fermi energy coincides with resonant impurity states in Pb_{1-x}Tl_{x}Te, and we rule out the presence of an additional valence band maximum at the Fermi energy. A comparison to nonsuperconducting Pb_{1-x}Na_{x}Te implies that the presence of these impurity states at the Fermi energy provides the enhanced pairing interaction and thus also the anomalously high temperature superconductivity in this material.

3.
Nat Commun ; 12(1): 4062, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210963

RESUMO

Spin-valley locking in monolayer transition metal dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a Dirac semimetal BaMnSb2. This is revealed by comprehensive studies using first principles calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy measurements. Moreover, this material also exhibits a stacked quantum Hall effect (QHE). The spin-valley degeneracy extracted from the QHE is close to 2. This result, together with the Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we also observed a plateau in the z-axis resistance, suggestive of a two-dimensional chiral surface state present in the quantum Hall state. These findings establish BaMnSb2 as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.

4.
Phys Rev Lett ; 105(20): 207004, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231258

RESUMO

The three-dimensional Fermi-surface morphology of superconducting BaFe2(As0.37P0.63)2 with T(c)=9 K is determined using the de Haas-van Alphen effect. The inner electron pocket has a similar area and k(z) interplane warping to the observed hole pocket, revealing that the Fermi surfaces are geometrically well nested in the (π,π) direction. These results are in stark contrast to the fermiology of the nonsuperconducting phosphides (x=1), and therefore suggest an important role for nesting in pnictide superconductivity.

5.
Phys Rev Lett ; 104(8): 086403, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366955

RESUMO

We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p approximately 0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).

6.
Phys Rev Lett ; 103(20): 207203, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-20366007

RESUMO

Single crystals of the spin dimer system Sr(3)Cr(2)O(8) have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of H(c1) approximately 30.4 T and H(c2) approximately 62 T. This field-induced order persists up to T(c)(max) approximately 8 K at H approximately 44 T, the highest observed in any quantum magnet where H(c2) is experimentally accessible. We fit the temperature-field phase diagram boundary close to H(c1) using the expression T(c) = A(H-H(c1))(nu). The exponent nu = 0.65(2), obtained at temperatures much smaller than T(c)(max), is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr(3)Cr(2)O(8) is a new realization of a triplon BEC where the universal regimes corresponding to both H(c1) and H(c2) are accessible at (4)He temperatures.

7.
J Phys Condens Matter ; 21(19): 192201, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21825471

RESUMO

We propose a quantum oscillation experiment by which the rotation of an underdoped YBa(2)Cu(3)O(6+x) sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|.

8.
Science ; 361(6401): 479-481, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072535

RESUMO

The anomalous metallic state in the high-temperature superconducting cuprates is masked by superconductivity near a quantum critical point. Applying high magnetic fields to suppress superconductivity has enabled detailed studies of the normal state, yet the direct effect of strong magnetic fields on the metallic state is poorly understood. We report the high-field magnetoresistance of thin-film La2-x Sr x CuO4 cuprate in the vicinity of the critical doping, 0.161 ≤ p ≤ 0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by magnetoresistance that is linear in magnetic fields up to 80 tesla. The magnitude of the linear-in-field resistivity mirrors the magnitude and doping evolution of the well-known linear-in-temperature resistivity that has been associated with quantum criticality in high-temperature superconductors.

9.
Nat Commun ; 9(1): 2217, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880848

RESUMO

Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 T: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 T we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral Landau levels. Above 80 T we observe strong ultrasonic attenuation below 2 K, suggesting a mesoscopically textured state of matter. These results point the way to inducing new correlated states of matter in the quantum limit of Weyl semimetals.

10.
Sci Rep ; 7(1): 1733, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28496192

RESUMO

The excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematic study of the BCS-BEC-like crossover by means of conventional condensed matter probes.

11.
Nat Commun ; 8: 14467, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211544

RESUMO

Controlled access to the border of the Mott insulating state by variation of control parameters offers exotic electronic states such as anomalous and possibly high-transition-temperature (Tc) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a superconductor for the first time in three-dimensional materials, but the impact of dimensionality and electron correlation on superconducting properties has remained unclear. Here we show that, near the Mott insulating phase, the upper critical field Hc2 of the fulleride superconductors reaches values as high as ∼90 T-the highest among cubic crystals. This is accompanied by a crossover from weak- to strong-coupling superconductivity and appears upon entering the metallic state with the dynamical Jahn-Teller effect as the Mott transition is approached. These results suggest that the cooperative interplay between molecular electronic structure and strong electron correlations plays a key role in realizing robust superconductivity with high-Tc and high-Hc2.

12.
Nat Commun ; 7: 12244, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27448102

RESUMO

The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.

13.
Sci Rep ; 6: 27294, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271852

RESUMO

The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

14.
Science ; 348(6232): 317-20, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25814065

RESUMO

In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18.

15.
Int J Radiat Oncol Biol Phys ; 27(3): 677-80, 1993 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-8226164

RESUMO

PURPOSE: To assess the value of low-dose-rate endobronchial brachytherapy in the treatment of malignant airway obstruction. METHODS AND MATERIALS: Between September 1986 and April 1989, 39 patients with malignant airway obstruction had 49 catheter placements for an afterloading, low-dose-rate Ir-192 endobronchial brachytherapy. A flexible fiberoptic bronchoscope with fluoroscopic guidance was used for positioning. Thirty-eight of 39 (97%) patients completed the prescribed treatments. Ninety-seven percent had received previous external radiation in doses ranging from 36-60 Gy. One patient had metastatic renal cell carcinoma; the remainder had recurrent lung cancer. Endobronchial laser treatments were given to three patients 2-3 weeks prior to endobronchial brachytherapy. All patients were followed until death. The median dose delivered in 48 of the 49 placements was 20 Gy at 1 cm. RESULTS: Follow-up bronchoscopy was performed in 28 (72%) of 39 patients. Of these, 13 (46%) had a complete response, 12 (43%) had a partial response, and 3 (17%) had a minor response. Dyspnea improved in 30 of 37 patients (82%); hemoptysis in 17 of 19 patients (89%); cough in 31 of 39 patients (79%); and postobstructive pneumonia in 21 of 23 patients (92%). The median survival for the entire group was 5 months (range 1-31 months). CONCLUSION: This technique is simple, well-tolerated and offered significant palliation.


Assuntos
Obstrução das Vias Respiratórias/radioterapia , Braquiterapia , Radioisótopos de Irídio/uso terapêutico , Neoplasias Pulmonares/radioterapia , Recidiva Local de Neoplasia/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Obstrução das Vias Respiratórias/etiologia , Carcinoma de Células Renais/secundário , Feminino , Humanos , Neoplasias Renais/radioterapia , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Taxa de Sobrevida
16.
Aust Vet J ; 51(12): 547-53, 1975 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1222004

RESUMO

Different techniques for monitoring cardiac responses to exercise in the horse have been described and evaluated. For experimental work of this type in a normal training and racing environment, the electrode system described when used with a portable magnetic tape recording system provided the best means of obtaining useful and reproducible data.


Assuntos
Teste de Esforço/veterinária , Coração/fisiologia , Cavalos/fisiologia , Monitorização Fisiológica/instrumentação , Gravação em Fita , Animais , Eletrônica/instrumentação , Teste de Esforço/instrumentação , Telemetria/instrumentação
17.
Nat Commun ; 3: 1067, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22990863

RESUMO

A current of electrons traversing a landscape of localized spins possessing non-coplanar magnetic order gains a geometrical (Berry) phase, which can lead to a Hall voltage independent of the spin-orbit coupling within the material-a geometrical Hall effect. Here we show that the highly correlated metal UCu(5) possesses an unusually large controllable geometrical Hall effect at T<1.2 K due to its frustration-induced magnetic order. The magnitude of the Hall response exceeds 20% of the ν=1 quantum Hall effect per atomic layer, which translates into an effective magnetic field of several hundred Tesla acting on the electrons. The existence of such a large geometric Hall response in UCu(5) opens a new field of enquiry into the importance of the role of frustration in highly correlated electron materials.

18.
J Phys Condens Matter ; 24(5): 052206, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22194040

RESUMO

The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa(5). This raises the possibility that the high superconducting transition temperature T(c) = 18.5 K of PuCoGa(5) stems from the proximity to a valence instability, while the superconductivity at T(c) = 2.5 K of PuCoIn(5) is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point.


Assuntos
Físico-Química/métodos , Cobalto/química , Elétrons , Gálio/química , Índio/química , Plutônio/química , Condutividade Elétrica , Temperatura Alta , Íons , Magnetismo , Modelos Estatísticos , Pressão , Temperatura , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA