Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 601(23): 5195-5211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37772438

RESUMO

Agonists of dopamine D2 receptors (D2R), 5-hydroxytryptamine (5-HT, serotonin) receptors (5-HTR) and ghrelin receptors (GHSR) activate neurons in the lumbosacral defecation centre, and act as 'colokinetics', leading to increased propulsive colonic motility, in vivo. In the present study, we investigated which neurons in the lumbosacral defecation centre express the receptors and whether dopamine, serotonin and ghrelin receptor agonists act on the same lumbosacral preganglionic neurons (PGNs). We used whole cell electrophysiology to record responses from neurons in the lumbosacral defecation centre, following colokinetic application, and investigated their expression profiles and the chemistries of their neural inputs. Fluorescence in situ hybridisation revealed Drd2, Ghsr and Htr2C transcripts were colocalised in lumbosacral PGNs of mice, and immunohistochemistry showed that these neurons have closely associated tyrosine hydroxylase and 5-HT boutons. Previous studies showed that they do not receive ghrelin inputs. Whole cell electrophysiology in adult mice spinal cord revealed that dopamine, serotonin, α-methylserotonin and capromorelin each caused inward, excitatory currents in overlapping populations of lumbosacral PGNs. Furthermore, dopamine caused increased frequency of both IPSCs and EPSCs in a cohort of D2R neurons. Tetrodotoxin blocked the IPSCs and EPSCs, revealing a post-synaptic excitatory action of dopamine. In lumbosacral PGNs of postnatal day 7-14 rats, only dopamine's postsynaptic effects were observed. Furthermore, inward, excitatory currents evoked by dopamine were reduced by the GHSR antagonist, YIL781. We conclude that lumbosacral PGNs are the site where the action of endogenous ligands of D2R and 5-HT2R converge, and that GHSR act as a cis-modulator of D2R expressed by the same neurons. KEY POINTS: Dopamine, 5-hydroxytryptamine (5-HT, serotonin) and ghrelin (GHSR) receptor agonists increase colorectal motility and have been postulated to act at receptors on parasympathetic preganglionic neurons (PGNs) in the lumbosacral spinal cord. We aimed to determine which neurons in the lumbosacral spinal cord express dopamine, serotonin and GHSR receptors, their neural inputs, and whether agonists at these receptors excite them. We show that dopamine, serotonin and ghrelin receptor transcripts are contained in the same PGNs and that these neurons have closely associated tyrosine hydroxylase and serotonin boutons. Whole cell electrophysiology revealed that dopamine, serotonin and GHSR receptor agonists induce an inward excitatory current in overlapping populations of lumbosacral PGNs. Dopamine-induced excitation was reversed by GHSR antagonism. The present study demonstrates that lumbosacral PGNs are the site at which actions of endogenous ligands of dopamine D2 receptors and 5-HT type 2 receptors converge. Ghrelin receptors are functional, but their role appears to be as modulators of dopamine effects at D2 receptors.


Assuntos
Dopamina , Serotonina , Humanos , Ratos , Animais , Camundongos , Dopamina/farmacologia , Serotonina/farmacologia , Receptores de Grelina , Ratos Sprague-Dawley , Roedores , Defecação/fisiologia , Grelina/farmacologia , Tirosina 3-Mono-Oxigenase/farmacologia , Receptores de Serotonina , Receptores de Dopamina D2
2.
J Neurochem ; 167(5): 648-667, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855271

RESUMO

Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (OxtrPBN neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating OxtrPBN neurons on satiation for different types of fluids. Chemogenetic activation of OxtrPBN neurons in male and female transgenic OxtrCre mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.72 g protein, 3.27 g fat, 13.42 g carbohydrates, and 1.01 g dietary fibre per 100 mL). OxtrPBN neuron activation also suppressed cumulative, longer-term (2-h) intake of lower caloric, less palatable solutions, but not highly caloric, palatable solutions. These results suggest that OxtrPBN neurons predominantly control initial fluid-satiation responses after rehydration, but not longer-term intake of highly caloric, palatable solutions. The suppression of fluid intake was not because of anxiogenesis, but because OxtrPBN neuron activation decreased anxiety-like behaviour. To investigate the role of different PBN subdivisions on the intake of different solutions, we examined FOS as a proxy marker of PBN neuron activation. Different PBN subdivisions were activated by different solutions: the dorsolateral PBN similarly by all fluids; the external lateral PBN by caloric but not non-caloric solutions; and the central lateral PBN primarily by highly palatable solutions, suggesting PBN subdivisions regulate different aspects of fluid intake. To explore the possible mechanisms underlying the minimal suppression of Ensure® after OxtrPBN neuron activation, we demonstrated in in vitro slice recordings that the feeding-associated agouti-related peptide (AgRP) inhibited OxtrPBN neuron firing in a concentration-related manner, suggesting possible inhibition by feeding-related neurocircuitry of fluid satiation neurocircuitry. Overall, this research suggests that although palatable beverages like sucrose- and ethanol-containing beverages activate fluid satiation signals encoded by OxtrPBN neurons, these neurons can be inhibited by hunger-related signals (agouti-related peptide, AgRP), which may explain why these fluids are often consumed in excess of what is required for fluid satiation.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Feminino , Animais , Núcleos Parabraquiais/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Saciação/fisiologia , Água/metabolismo , Sacarose/farmacologia , Etanol/farmacologia
3.
J Neurosci ; 39(41): 8038-8050, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471471

RESUMO

Integration and modulation of primary afferent sensory information begins at the first terminating sites within the CNS, where central inhibitory circuits play an integral role. Viscerosensory information is conveyed to the nucleus of the solitary tract (NTS) where it initiates neuroendocrine, behavioral, and autonomic reflex responses that ensure optimal internal organ function. This excitatory input is modulated by diverse, local inhibitory interneurons, whose functions are not clearly understood. Here we show that, in male rats, 65% of somatostatin-expressing (SST) NTS neurons also express GAD67, supporting their likely role as inhibitory interneurons. Using whole-cell recordings of NTS neurons, from horizontal brainstem slices of male and female SST-yellow fluorescent protein (YFP) and SST-channelrhodopsin 2 (ChR2)-YFP mice, we quantified the impact of SST-NTS neurons on viscerosensory processing. Light-evoked excitatory photocurrents were reliably obtained from SST-ChR2-YFP neurons (n = 16) and the stimulation-response characteristics determined. Most SST neurons (57%) received direct input from solitary tract (ST) afferents, indicating that they form part of a feedforward circuit. All recorded SST-negative NTS neurons (n = 72) received SST-ChR2 input. ChR2-evoked PSCs were largely inhibitory and, in contrast to previous reports, were mediated by both GABA and glycine. When timed to coincide, the ChR2-activated SST input suppressed ST-evoked action potentials at second-order NTS neurons, demonstrating strong modulation of primary viscerosensory input. These data indicate that the SST inhibitory network innervates broadly within the NTS, with the potential to gate viscerosensory input to powerfully alter autonomic reflex function and other behaviors.SIGNIFICANCE STATEMENT Sensory afferent input is modulated according to state. For example the baroreflex is altered during a stress response or exercise, but the basic mechanisms underpinning this sensory modulation are not fully understood in any sensory system. Here we demonstrate that the neuronal processing of viscerosensory information begins with synaptic gating at the first central synapse with second-order neurons in the NTS. These data reveal that the somatostatin subclass of inhibitory interneurons are driven by visceral sensory input to play a major role in gating viscerosensory signals, placing them within a feedforward circuit within the NTS.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Sensação/fisiologia , Filtro Sensorial/fisiologia , Somatostatina/fisiologia , Animais , Retroalimentação Fisiológica , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/fisiologia , Glicina/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Rede Nervosa/citologia , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Fibras Aferentes Viscerais/fisiologia , Ácido gama-Aminobutírico/fisiologia
4.
J Neurosci ; 37(27): 6558-6574, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28576943

RESUMO

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.


Assuntos
Vias Aferentes/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Ácidos Siálicos/metabolismo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
J Physiol ; 595(3): 901-917, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616729

RESUMO

KEY POINTS: Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT: Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.


Assuntos
Núcleo Central da Amígdala/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Núcleo Solitário/fisiologia , Animais , Masculino , Neurônios/fisiologia , Ratos Sprague-Dawley
6.
Bioanalysis ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530219

RESUMO

This manuscript reports back from the discussion in the European Bioanalysis Forum community on the challenges observed when implementing Good Clinical Practices in the bioanalytical laboratory. It is not intended to challenge any regulatory requirements but to open a discussion on where the bioanalytical community sees ambiguities on implementing Good Clinical Practices or areas where expectations are either felt not being owned by Bioanalysis or where Good Clinical Practices requirements are at risk of getting contaminated with requirements originating from Good Laboratory Practices. In addition to this, the discussions focused on three additional main challenges: the informed consent withdrawal, expedited reporting of unexpected results and the risk-based approach to quality management, The European Bioanalysis Forum community is continuing discussions, but already this manuscript should help to appreciate the challenges and to try and resolve them, involving all stakeholders.

7.
Bioanalysis ; 16(5): 259-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315622

RESUMO

The ICH M10 guideline on bioanalytical method validation and sample analysis is being adopted since 2023. However, and inevitably, some paragraphs or requirements remain ambiguous and are open for different interpretations. In support of a harmonized interpretation by the industry and health authorities, the European Bioanalysis Forum organized a workshop on 14 November 2023 in Barcelona, Spain, to discuss unclear and/or ambiguous paragraphs which were identified by the European Bioanalysis Forum community and delegates of the workshop prior to the workshop. This manuscript reports back from the workshop with recommendations and aims at continuing an open scientific discussion within the industry and with regulators in support of a science-driven guideline for the bioanalytical community and in line with the ICH mission - that is, achieve greater harmonization worldwide to ensure that safe, effective and high-quality medicines are developed and registered in the most resource-efficient manner.


Assuntos
Projetos de Pesquisa , Relatório de Pesquisa , Retroalimentação
8.
J Neurophysiol ; 109(2): 507-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23114206

RESUMO

Cranial primary afferents from the viscera enter the brain at the solitary tract nucleus (NTS), where their information is integrated for homeostatic reflexes. The organization of sensory inputs is poorly understood, despite its critical impact on overall reflex performance characteristics. Single afferents from the solitary tract (ST) branch within NTS and make multiple contacts onto individual neurons. Many neurons receive more than one ST input. To assess the potential interaction between converging afferents and proximal branching near to second-order neurons, we probed near the recorded soma in horizontal slices from rats with focal electrodes and minimal shocks. Remote ST shocks evoked monosynaptic excitatory postsynaptic currents (EPSCs), and nearby focal shocks also activated monosynaptic EPSCs. We tested the timing and order of stimulation to determine whether focal shocks influenced ST responses and vice versa in single neurons. Focal-evoked EPSC response profiles closely resembled ST-EPSC characteristics. Mean synaptic jitters, failure rates, depression, and phenotypic segregation by capsaicin responsiveness were indistinguishable between focal and ST-evoked EPSCs. ST-EPSCs failed to affect focal-EPSCs within neurons, indicating that release sites and synaptic terminals were functionally independent and isolated from cross talk or neurotransmitter overflow. In only one instance, focal shocks intercepted and depleted the ST axon generating evoked EPSCs. Despite large numbers of functional contacts, multiple afferents do not appear to interact, and ST axon branches may be limited to close to the soma. Thus single or multiple primary afferents and their presynaptic active release sites act independently when they contact single second-order NTS neurons.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neurônios/fisiologia , Núcleo Solitário/fisiologia , Vísceras/inervação , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia
9.
Elife ; 122023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772793

RESUMO

The pre-Bötzinger complex (preBötC), a key primary generator of the inspiratory breathing rhythm, contains neurons that project directly to facial nucleus (7n) motoneurons to coordinate orofacial and nasofacial activity. To further understand the identity of 7n-projecting preBötC neurons, we used a combination of optogenetic viral transgenic approaches to demonstrate that selective photoinhibition of these neurons affects mystacial pad activity, with minimal effects on breathing. These effects are altered by the type of anesthetic employed and also between anesthetized and conscious states. The population of 7n-projecting preBötC neurons we transduced consisted of both excitatory and inhibitory neurons that also send collaterals to multiple brainstem nuclei involved with the regulation of autonomic activity. We show that modulation of subgroups of preBötC neurons, based on their axonal projections, is a useful strategy to improve our understanding of the mechanisms that coordinate and integrate breathing with different motor and physiological behaviors. This is of fundamental importance, given that abnormal respiratory modulation of autonomic activity and orofacial behaviors have been associated with the development and progression of diseases.


While breathing seems to come easy, it is a complex process in which many muscles coordinate to allow air to flow into the lungs. These muscles also control the flow of air we breathe out to allow us to talk, sing, eat, or drink. The brain circuits that control these muscles, can also influence other parts of the brain. The preBötzinger Complex, which is a key region of brainstem circuits that generate and control breathing, contains neurons that also project widely, connecting to other regions of the brain. This helps to modulate the sense of smell, emotional state, heart rate, and even blood pressure. Understanding how the preBötzinger Complex is organized can untangle how breathing can influence these other processes. Melo et al. wanted to learn whether they could manipulate the activity of a subgroup of preBötzinger Complex neurons that project into the facial nucleus ­ a region of the brain that controls the muscles of the face when we breathe ­ without affecting breathing. If this can be done, it might also be possible to affect blood pressure by manipulating selective preBötzinger neurons, and thus the development of hypertension, without having any impact on breathing. To test this hypothesis, Melo et al. used rats in which the activation of preBötzinger Complex neurons that project into the facial nucleus was blocked. This decreased the activity of the muscles around the nose with hardly any effect on breathing. Melo et al. also found that the state of consciousness of the rat (anesthetized or conscious) could affect how preBötzinger Complex neurons control these muscles. Melo et al. also observed that preBötzinger Complex neurons projecting into the facial nucleus had projections into many other regions in the brainstem. This might help to the coordinate respiratory, cardiovascular, orofacial, and potentially other physiological functions. The findings of Melo et al. set a technical foundation for exploring the influence of specific subgroups of preBötzinger Complex neurons on respiratory modulation of other physiological activities, including blood pressure and heart rate and in conditions, such as hypertension and heart failure. More broadly, most brain regions contain complex and heterogeneous groups of neurons and the strategy validated by Melo et. al. could be applied to unravel other brain-function relationships.


Assuntos
Núcleo do Nervo Facial , Ratos , Animais , Centro Respiratório , Respiração , Neurônios Motores , Tronco Encefálico
10.
J Physiol ; 590(22): 5677-89, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22946100

RESUMO

Visceral primary afferents enter the CNS at the caudal solitary tract nucleus (NTS), and activate central pathways key to autonomic and homeostatic regulation. Excitatory transmission from primary solitary tract (ST)-afferents consists of multiple contacts originating from single axons that offer a remarkably high probability of glutamate release and high safety factor for ST afferent excitation. ST afferent activation sometimes triggers polysynaptic GABAergic circuits, which feedback onto second-order NTS neurons. Although inhibitory transmission is observed at second-order neurons, much less is known about the organization and mechanisms regulating GABA transmission. Here, we used a focal pipette to deliver minimal stimulus shocks near second-order NTS neurons in rat brainstem slices and directly activated single GABAergic axons. Most minimal focal shocks activated low jitter EPSCs from single axons with characteristics resembling ST afferents. Much less commonly (9% of sites), minimal focal shocks activated monosynaptic IPSCs at fixed latency (low jitter) that often failed (30%) and had no frequency-dependent facilitation or depression. These GABA release characteristics contrasted markedly to the unfailing, large amplitudes for glutamate released during ST-EPCSs recorded from the same neurons. Surprisingly, unitary GABAergic IPSCs were only weakly calcium dependent. In some neurons, strong focal shocks evoked compound IPSCs indicating convergent summation of multiple inhibitory axons. Our studies demonstrate that second-order NTS neurons receive GABAergic transmission from a diffuse network of inhibitory axons that rely on an intrinsically less reliable and substantially weaker release apparatus than ST excitation. Effective inhibition depends on co-activation of convergent inputs to blunt excitatory drive.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/fisiologia , Núcleo Solitário/fisiologia , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Vias Aferentes/fisiologia , Animais , Axônios/fisiologia , Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Rede Nervosa , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley
11.
J Comp Neurol ; 530(17): 3072-3103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988033

RESUMO

Anatomical tracing studies examining the vagal system can conflate details of sensory afferent and motor efferent neurons. Here, we used a serotype of adeno-associated virus that transports retrogradely and exhibits selective tropism for vagal afferents, to map their soma location and central termination sites within the nucleus of the solitary tract (NTS). We examined the vagal sensory afferents innervating the trachea, duodenum, stomach, or heart, and in some animals, from two organs concurrently. We observed no obvious somatotopy in the somata distribution within the nodose ganglion. The central termination patterns of afferents from different organs within the NTS overlap substantially. Convergence of vagal afferent inputs from different organs onto single NTS neurons is observed. Abdominal and thoracic afferents terminate throughout the NTS, including in the rostral NTS, where the 7th cranial nerve inputs are known to synapse. To address whether the axonal labeling produced by viral transduction is so widespread because it fills axons traveling to their targets, and not just terminal fields, we labeled pre and postsynaptic elements of vagal afferents in the NTS . Vagal afferents form multiple putative synapses as they course through the NTS, with each vagal afferent neuron distributing sensory signals to multiple second-order NTS neurons. We observe little selectivity between vagal afferents from different visceral targets and NTS neurons with common neurochemical phenotypes, with afferents from different organs making close appositions with the same NTS neuron. We conclude that specific viscerosensory information is distributed widely within the NTS and that the coding of this input is probably determined by the intrinsic properties and projections of the second-order neuron.


Assuntos
Núcleo Solitário , Nervo Vago , Animais , Neurônios Motores , Neurônios Aferentes/fisiologia , Gânglio Nodoso , Ratos , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia
12.
Bioanalysis ; 14(22): 1407-1411, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36705021

RESUMO

In this report, the European Bioanalysis Forum shares the proposals for harmonized implementation of the ICH M10 guideline on bioanalytical method validation and study sample analysis from the ICH M10 workshop. The focus of the discussions was to understand new, changed or still ambiguous regulatory expectations in the guideline, as identified in feedback from the pre-workshop surveys or during the workshop. The proposals from the workshop aim at stimulating and helping a harmonized implementation of the guideline, and using our community as a sounding board during and after implementation to highlight areas of misalignment and to create a platform for continued sharing with the regulatory authorities in an effort to contribute to industry and regulators developing similar interpretations on guideline expectations.


Assuntos
Projetos de Pesquisa , Relatório de Pesquisa , Indústrias
13.
J Neurosci ; 30(43): 14470-5, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980604

RESUMO

Central synapses spontaneously release neurotransmitter at low rates. In the brainstem, cranial visceral afferent terminals in caudal solitary tract nucleus (NTS) display pronounced, activity-dependent, asynchronous release of glutamate and this extra release depends on TRPV1 receptors (TRPV1+). Asynchronous release is absent for afferents lacking TRPV1 (TRPV1-) and resting EPSC frequency was greater in TRPV1+. Here, we studied this basal activity difference by assessing thermal sensitivity of spontaneous and miniature synaptic events in TRPV1+ and TRPV1- second-order NTS neurons. The spontaneous EPSC rate decreased when temperature was decreased, increased steeply between 30 and 42°C only in TRPV1+ neurons, and was calcium-dependent. TRPV1-specific antagonist SB366791, but not TTX, strongly attenuated thermal responses. Temperature changes failed to alter EPSC frequency in TRPV1- neurons. EPSC amplitudes and decay kinetics changed little with temperature. IPSCs in these second-order NTS neurons were unaltered by temperature. Such results suggest that activated, presynaptic TRPV1+ receptors trigger continuous resting release of glutamate vesicles at physiological temperatures only in capsaicin-responsive terminals. In mechanically isolated individual neurons harvested from medial NTS, increases in temperature increased the rate of glutamate release only in TRPV1+ neurons, whereas IPSC rates were unaffected. Cadmium failed to block thermal increases in glutamate release, suggesting that calcium entry through TRPV1 channels may trigger glutamate release independently of voltage-activated calcium channels. Together, our findings indicate a new form of afferent signaling in which TRPV1 channels within central terminals of peripheral afferents tonically generate glutamate release in NTS at 37°C in the absence of afferent action potentials.


Assuntos
Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Canais de Cátion TRPV/fisiologia , Sensação Térmica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Anilidas/farmacologia , Animais , Compostos de Cádmio/farmacologia , Cálcio/fisiologia , Capsaicina/farmacologia , Cinamatos/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/metabolismo
14.
Brain Stimul ; 14(2): 450-459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647477

RESUMO

BACKGROUND: Modulating brainstem activity, via electrical vagus nerve stimulation (VNS), influences cognitive functions, including memory. However, controlling for changes in stimulus efficacy during chronic studies, and response variability between subjects, is problematic. OBJECTIVE/HYPOTHESIS: We hypothesized that recruitment of an autonomic reflex, the Hering-Breuer reflex, would provide robust confirmation of VNS efficacy. We compared this to measurement of electrode resistance over time. We also examined whether VNS modulates contextual memory extinction. METHODS: Electrodes for VNS and diaphragm electromyography recording were implanted into anesthetized Sprague Dawley rats. When conscious, we measured the electrode resistance as well as the minimum VNS current required to evoke the Hering-Breuer reflex, before, and after, an inhibitory avoidance assay - a two chamber, dark/light model, where the dark compartment was paired with an aversive foot shock. The extinction of this contextual memory was assessed in sham and VNS treated rats, with VNS administered for 30 s at 1.5 times the Hering-Breuer reflex threshold during extinction memory formation. RESULTS: Assessment of VNS-evoked Hering-Breuer reflex successfully identified defective electrodes. VNS accelerated extinction memory and decreased multiple physiological metrics of fear expression. We observed an inverse relationship between memory extinction and respiratory rate during the behavioural assay. Additionally, no current - response relationship between VNS and extinction memory formation was established. CONCLUSION: These data demonstrate that reliable, experimental VNS studies can be produced by verifying reflex initiation as a consequence of stimulation. Further, studies could be standardised by indexing stimulator efficacy to initiation of autonomic reflexes.


Assuntos
Estimulação do Nervo Vago , Animais , Medo , Ratos , Ratos Sprague-Dawley , Reflexo , Reprodutibilidade dos Testes , Nervo Vago
15.
Stem Cell Reports ; 16(5): 1262-1275, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33836146

RESUMO

Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease.


Assuntos
Córtex Cerebral/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Organogênese , Transdução de Sinais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organogênese/efeitos dos fármacos , Fator de Transcrição PAX6/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo
16.
Bioanalysis ; 13(8): 655-667, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33829863

RESUMO

Background: A high-throughput method using inductively coupled plasma mass spectrometry (ICP-MS) was developed and validated for the quantitative analysis of antimony in human plasma and peripheral blood mononuclear cells from patients with cutaneous leishmaniasis undergoing treatment with meglumine antimoniate. Materials & methods: Antimony was digested in clinical samples with 1% tetramethylammonium hydroxide/1% EDTA and indium was used as internal standard. Accuracy, precision and stability were evaluated. Conclusion: Taking the lower limit of quantitation to be the lowest validation concentration with precision and accuracy within 20%, the current assay was successfully validated from 25 to 10000 ng/ml for antimony in human plasma and peripheral blood mononuclear cells. This protocol will serve as a baseline for future analytical designs, aiming to provide a reference method to allow inter-study comparisons.


Lay abstract Cutaneous leishmaniasis is a disease caused by single-cell parasites in the genus Leishmania which results in painful skin ulcers and is spread by insect bites. Drugs containing antimony are the mainstay therapy for cutaneous leishmaniasis, but if and how the amount of these compounds in the cells can affect the success of the treatment, remains unknown. Validated methods to reliably measure these amounts in human cells are limited. Here we have developed a validated method that allows quantifying antimony in human plasma and peripheral blood cells from patients undergoing antileishmanial treatment. This protocol will serve as a baseline for future studies aiming to understand how antimonials work to treat leishmaniasis infections and how this therapy can be improved.


Assuntos
Antimônio/química , Antiprotozoários/farmacocinética , Antimoniato de Meglumina/farmacocinética , Antimônio/sangue , Antiprotozoários/sangue , Antiprotozoários/química , Humanos , Leishmania/efeitos dos fármacos , Espectrometria de Massas , Antimoniato de Meglumina/sangue , Antimoniato de Meglumina/química , Estrutura Molecular , Testes de Sensibilidade Parasitária
17.
Brain Stimul ; 14(1): 88-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33217609

RESUMO

BACKGROUND: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease. OBJECTIVE: Here we report a successful application of optogenetics for selective stimulation of vagal efferent activity in a large animal model (sheep). METHODS AND RESULTS: Twelve weeks after viral transduction of a subset of vagal motoneurons, strong axonal membrane expression of the excitatory light-sensitive ion channel ChIEF was achieved in the efferent projections innervating thoracic organs and reaching beyond the level of the diaphragm. Blue laser or LED light (>10 mW mm-2; 1 ms pulses) applied to the cervical vagus triggered precisely timed, strong bursts of efferent activity with evoked action potentials propagating at speeds of ∼6 m s-1. CONCLUSIONS: These findings demonstrate that in species with a large, multi-fascicled vagus nerve, it is possible to stimulate a specific sub-population of efferent fibers using light at a site remote from the vector delivery, marking an important step towards eventual clinical use of optogenetic technology for autonomic neuromodulation.


Assuntos
Optogenética , Estimulação do Nervo Vago , Animais , Mamíferos , Neurônios Motores , Ratos , Ovinos , Nervo Vago
18.
J Neurosci ; 29(41): 12886-95, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19828803

RESUMO

Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.


Assuntos
Neurônios Aferentes/fisiologia , Núcleo Solitário/citologia , Sinapses/fisiologia , Vias Aferentes/fisiologia , Análise de Variância , Animais , Biofísica , Mapeamento Encefálico , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Sinapses/classificação
19.
Bioanalysis ; 12(14): 1033-1038, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32706625

RESUMO

In this paper, the European Bioanalysis Forum reports back from the discussions with software developers, involved in regulated bioanalysis software solutions, on agreeing to data transfer specification in the bioanalytical labs' LC-MS workflows as part of today's Data Integrity (DI) challenges. The proposed specifications aim at identifying what consists of a minimum dataset, that is, which are the pre-identified fields to be included in DI proof bidirectional data transfer between LC-MS and information management systems. The proposal is an attempt from the European Bioanalysis Forum to facilitate new software solutions becoming available to increase compliance related to DI in today's LC-MS workflows. The proposal may also serve as a template and inspiration for new data transfer solutions in other workflows.


Assuntos
Bioensaio/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Europa (Continente) , Humanos
20.
Cell Rep ; 32(11): 108139, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937120

RESUMO

Chemogenetics enables manipulation of neuronal activity in experimental animals. While providing information about the transduced neuron expressing a ligand-activated molecule, chemogenetics does not provide understanding about the antecedent circuit that drives that neuron's activity. For current approaches, this is not feasible, because the activating molecules are not genetically encoded. The insect allatostatin/allatostatin receptor system, a highly specific, powerful inhibitory chemogenetic approach, has this advantage, because the ligand, being a peptide, is genetically encoded. We developed viral vector-based systems to express biologically active allatostatin in neurons in vivo and allatostatin receptors in subpopulations of postsynaptic neurons. We demonstrate that activity-dependent release of allatostatin induces inhibition of allatostatin receptor-expressing neurons. We validate the approach in the vagal viscerosensory system where inhibitory, rather than the usual excitatory, viscerosensory input leads to sustained decreases in baroreceptor reflex sensitivity and bodyweight.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea , Peso Corporal , Células CHO , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Proteínas de Homeodomínio , Homeostase , Humanos , Neurônios Aferentes/fisiologia , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Superfície Celular/metabolismo , Núcleo Solitário/fisiologia , Sinapses/metabolismo , Transgenes , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA