Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8449, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30950108

RESUMO

RATIONALE: Successful coupling of a multi-ionization automated platform with commercially available mass spectrometers provides improved coverage of compounds in complex mixtures through implementation of new and traditional ionization methods. The versatility of the automated platform is demonstrated through coupling with mass spectrometers from two different vendors. Standards and complex biological samples were acquired using electrospray ionization (ESI), solvent-assisted ionization (SAI) and matrix-assisted ionization (MAI). METHODS: The MS™ prototype automated platform samples from 96- or 384-well plates as well as surfaces. The platform interfaces with Thermo Fisher Scientific mass spectrometers by replacement of the IonMax source, and on Waters mass spectrometers with additional minor source inlet modifications. The sample is transferred to the ionization region using a fused-silica or metal capillary which is cleaned between acquisitions using solvents. For ESI and SAI, typically 1 µL of sample solution is drawn into the capillary tube and for ESI slowly dispensed near the inlet of the mass spectrometer with voltage placed on the delivering syringe barrel to which the tubing is attached, while for SAI the sample delivery tubing inserts into the inlet without the need for high voltage. For MAI, typically, 0.2 µL of matrix solution is drawn into the syringe before drawing 0.1 µL of the sample solution and dispensing to dry before insertion into the inlet. RESULTS: A comparison study of a mixture of angiotensin I, verapamil, crystal violet, and atrazine representative of peptides, drugs, dyes, and herbicides using SAI, MAI, and ESI shows large differences in ionization efficiency of the various components. Solutions of a mixture of erythromycin and azithromycin in wells of a 384-microtiter well plate were mass analyzed at the rate of ca 1 min per sample using MAI and ESI. In addition, we report the analysis of bacterial extracts using automated MAI and ESI methods. Finally, the ability to perform surface analysis with the automated platform is also demonstrated by directly analyzing dyes separated on a thin-layer chromatography (TLC) plate and compounds extracted from the surface of a beef liver tissue section. CONCLUSIONS: The prototype multi-ionization automated platform offers solid matrix introduction used with MAI, as well as solution introduction using either ESI or SAI. The combination of ionization methods extends the types of compounds which are efficiently ionized and is especially valuable with complex mixtures as demonstrated for bacterial extracts. While coupling of the automated multi-ionization platform to Thermo and Waters mass spectrometers is demonstrated, it should be possible to interface it with most commercial mass spectrometers.

2.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8829, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32402102

RESUMO

RATIONALE: The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS: The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS: Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS: Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.


Assuntos
Espectrometria de Massas , Animais , Bactérias/química , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Camundongos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Vácuo
3.
Anal Chem ; 90(19): 11188-11192, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30130391

RESUMO

Vacuum matrix-assisted ionization (vMAI) uses select matrix compounds which when exposed to the vacuum of a mass spectrometer produce gas-phase ions from associated volatile or nonvolatile analyte without external energy input. Here, a vMAI source was constructed to replace the commercial inlet of a Thermo Orbitrap mass spectrometer. This allowed for rapid introduction of the matrix/analyte sample by a probe, contrary to vacuum matrix-assisted laser desorption/ionization (MALDI) sources. The matrix/analyte sample is inserted into a region of the "S-lens" entrance, where the spontaneously formed ions can be effectively transferred to the mass analyzer. This specifically designed ion source requires no laser, high voltage, heat, or nebulizing gases. A low voltage is used to transmit the ions through the commercial "S-lens" assembly and airflow can be used to modulate the ionization event. A few picograms of the drug erythromycin, assisted by the 3-nitrobenzonitrile vMAI matrix, is sufficient to produce mass spectra for over 1 min with the MH+ ion as the base peak in each mass spectrum. There is minimal carryover when loading high concentration samples and complex mixtures, contrary to direct infusion electrospray ionization, providing the probe is thoroughly cleaned between each new sample acquisition. Analyses of biological fluids, bacterial extracts, tissue, and high concentration samples have so far shown no indication of inlet or instrument contamination with these samples. The typical ultrahigh resolution and mass accuracy of the mass spectrometer are achieved, and a path forward to potential high throughput acquisitions demonstrated. It is expected that robustness can be introduced to any mass spectrometer through implementation of such a simple source.

4.
Chemphyschem ; 19(5): 581-589, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29205749

RESUMO

In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization.

5.
Anal Chem ; 89(9): 4798-4802, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28387502

RESUMO

Electrospray ionization inlet (ESII) combines positive aspects of electrospray ionization (ESI) and solvent-assisted ionization (SAI). Similar to SAI, the analyte solution is directly introduced into a heated inlet tube linking atmospheric pressure and the initial vacuum stage of the mass spectrometer. However, unlike SAI, in ESII a voltage is applied to the solution through a metal union linking two sections of fused silica tubing through which solution flows into the inlet. Here, we demonstrate liquid chromatography (LC) ESII/MS on two different mass spectrometers using a mixture of drugs, a peptide standard mixture, and protein digests. This LC-ESII/MS approach has little dead volume and thus provides excellent chromatographic resolution at mobile phase flow rates from 1 to 55 µL min-1. Significant improvement in ion abundance and less chemical background ions were observed relative to ESI for all drugs and peptides tested at flow rates from 15 to 55 µL min-1. At a low inlet tube temperature, ESII has an ionization selectivity similar to that of ESI but, at higher inlet temperatures, appears to have the attributes of both ESI and SAI.

6.
Anal Chem ; 86(15): 7343-50, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25014489

RESUMO

Introducing water or methanol containing a low concentration of volatile or nonvolatile analyte into an inlet tube cooled with dry ice linking atmospheric pressure and the first vacuum stage of a mass spectrometer produces gas-phase ions even of small proteins that can be detected by mass spectrometry. Collision-induced dissociation experiments conducted in the first vacuum region of the mass spectrometer suggest analyte ions being protected by a solvent cage. The charges may be produced by processes similar to those proposed for charge separation under freezing conditions in thunderclouds. By this process, the surface of an ice pellet is charged positive and the interior negative so that removal of surface results in charge separation. A reversal of surface charge is expected for a heated droplet surface, and this is observed by heating rather than cooling the inlet tube. These observations are consistent with charged supercooled droplets or ice particles as intermediates in the production of analyte ions under freezing conditions.


Assuntos
Congelamento , Gases/química , Espectrometria de Massas/métodos , Metanol/química , Água/química
7.
J Mass Spectrom ; 59(6): e5018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736378

RESUMO

This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.

8.
Mol Cell Proteomics ; 10(2): M110.000760, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20855542

RESUMO

Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 µm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.


Assuntos
Encéfalo/metabolismo , Proteínas/química , Acetofenonas/química , Animais , Pressão Atmosférica , Elétrons , Análise de Fourier , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 276-291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37999746

RESUMO

In remembrance of Prof. Dr Przybylski, we are presenting a vision towards his beloved mass spectrometry (MS) and its far-reaching promises outside of the academic laboratory. Sub-atmospheric pressure (AP) ionization MS is well positioned to make a step-change in direct ionization, a concept that allows sublimation/evaporation ionization and mass analyses of volatile and nonvolatile molecules from clean or dirty samples, directly, accurately, sensitively, and in a straightforward manner that has the potential to expand the field of MS into unchartered application areas. Contrary to ambient ionization MS, ionization commences in the sub-AP region of the mass spectrometer, important for practical and safety reasons, and offers inter alia, simplicity, speed, sensitivity, and robustness directly from real-world samples without cleanup. The plate source concept, presented here, provides an easy to use, rapid, and direct sample introduction from AP into the sub-AP of a mass spectrometer. Utilizing sub-AP ionization MS based on the plate source concept, small to large molecules from various environments that would be deemed too dirty for some direct MS methods are demonstrated. The new source concept can be expanded to include multiple ionization methods using the same plate source "front end" without the need to vent the mass spectrometer between the different methods, thus allowing ionization of more compounds on the same mass spectrometer for which any one ionization method may be insufficient. Examples such as fentanyl, gamma-hydroxybutyric acid, clozapine, 1-propionyllysergic acid, hydrocodone angiotensin I and II, myoglobin, and carbonic anhydrase are included.

10.
Anal Chem ; 84(15): 6828-32, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22742705

RESUMO

Combining electrospray ionization (ESI) and solvent assisted inlet ionization (SAII) provides higher ion abundances over a wide range of concentrations for peptides and proteins than either ESI or SAII. In this method, a voltage is applied to a union connector linking tubing from a solvent delivery device and the fused silica capillary, used with SAII, inserted into a heated inlet tube of an Orbitrap Exactive mass spectrometer (MS). The union can be metal or polymeric and the voltage can be applied directly or contactless. Solution flow rates from less than a 1 µL min(-1) to over 100 µL min(-1) can be accommodated. It appears that the voltage is only necessary to provide charge separation in solution, and the hot MS inlet tube and the high velocity of gas through the tube linking atmospheric pressure and vacuum provides droplet formation. As little as 100 V produces an increase in ion abundance for certain compounds using this method relative to no voltage. Interestingly, the total ion current observed with SAII and this electrosprayed inlet ionization (ESII) method are very similar for weak acid solutions, but with voltage on, the ion abundance for peptides and proteins increase as much as 100-fold relative to other compounds in the solution being analyzed. Thus, switching between SAII (voltage off) and ESII (voltage on) provides a more complete picture of the solution contents than either method alone.

11.
Rapid Commun Mass Spectrom ; 26(23): 2763-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23124667

RESUMO

RATIONALE: A new variation of sonicspray ionization (SSI) significantly enhances its sensitivity with an advantage of producing selective or more inclusive ionization by changing the polarity of the potential applied to an obstruction in the path of the SSI spray. This technique also provides high sensitivity with water solutions, which is difficult for electrospray ionization (ESI) without added organic solvent. METHODS: An Orbitrap Exactive mass spectrometer with an IonMax source heated electrospray ionization (ESI) probe operating at its maximum sheath gas setting was used for SSI. Both positive and negative polarities varying from 0.1 to 4 kV were applied to a metal obstruction positioned in the path of the spray using an atmospheric solid analysis probe. All mass spectra for this study were acquired in the positive ion mode. RESULTS: SSI using a variety of obstructions improved the observed analyte ion abundance of small molecules, peptides, and proteins by approximately two orders of magnitude. The addition of a DC or AC voltage to a metal obstruction further enhanced the abundance of analyte ions by an additional two orders of magnitude. The relative abundances of the detected positive ions were considerably altered by switching the voltage polarity on the obstruction. CONCLUSIONS: SSI with an obstruction improves the sensitivity of various samples compared with SSI. An applied voltage onto the obstruction further enhances the analyte ion abundances to approximately equal that of ESI but has the added advantage that switching the voltage polarity from positive to negative on the obstruction emphasizes different compounds present in the sample.

12.
Rapid Commun Mass Spectrom ; 26(8): 887-92, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22396024

RESUMO

RATIONALE: Steroids can be injected to behave as therapeutic agents to promote muscle growth and strength. Areas of concern include synthetic steroids in consumer meat and milk products and the presence of anabolic steroids in athletes. Here we demonstrate a new ionization method for high sensitivity steroid analysis using liquid chromatography/mass spectrometry (LC/MS). METHODS: Solvent-assisted inlet ionization (SAII) mass spectrometry was coupled directly to an infusion pump or to a liquid chromatograph to determine the limits of detection and quantitation for selected steroids. LC/MS/MS data was acquired on a quadrupole time-of-flight (QTOF) mass spectrometer and high resolution-accurate mass LC/MS data was obtained on an Orbitrap mass spectrometer. RESULTS: The SAII limit of detection for infusion into the Orbitrap using high mass resolution and accurate mass was shown, for the steroids studied, to be low ppqt and the limit of quantitation using LC/MS was low ppt. Low ppb levels were detected with high signal-to-noise from spiked urine using a simple Ziptip procedure without sample concentration. CONCLUSIONS: LC/SAII-MS is more sensitive than electrospray ionization (ESI) at similar mobile phase flow rates for the analysis of steroids. Previous studies have shown LC/SAII-MS to have high sensitivity for analysis of peptides. The combined results suggests this easy to implement ionization method may advantageously replace ESI for a wide range of analyses.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Esteroides/análise , Anabolizantes/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Mol Cell Proteomics ; 9(2): 362-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19955086

RESUMO

The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.


Assuntos
Pressão Atmosférica , Gases/química , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bovinos , Íons , Muramidase , Soluções , Espectrometria de Massas por Ionização por Electrospray , Temperatura
14.
Anal Chem ; 83(11): 3981-5, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21528896

RESUMO

A new inlet ionization method requiring no voltage or laser, and using water, methanol, or water/organic solvent mixtures, is shown to produce mass spectra similar to those obtained with electrospray ionization (ESI) for small molecules, peptides, and proteins, at least as large as carbonic anhydrase, with sensitivity that surpasses ESI. With the use of wide mass range acquisitions at 100,000 mass resolution on an Orbitrap Exactive, detection limits below parts per trillion are obtained for small molecules such as arginine, ciprofloxacin, and acetaminophen. Low attomoles of bovine insulin consumed produced a multiply charged mass spectrum. Ions are generated, even using pure water as solvent, within the heated inlet tube linking atmospheric pressure with the first vacuum stage of the Orbitrap Exactive. The extremely high sensitivity observed at this early stage of solvent assisted inlet ionization (SAII) development suggests that inlet ionization may surpass nanoelectrospray in sensitivity but without the need for extremely low solvent flows.

15.
Anal Chem ; 83(20): 7591-4, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21899326

RESUMO

Inlet ionization is a new approach for ionizing both small and large molecules in solids or liquid solvents with high sensitivity. The utility of solvent based inlet ionization mass spectrometry (MS) as a method for analysis of volatile and nonvolatile compounds eluting from a liquid chromatography (LC) column is demonstrated. This new LC/MS approach uses reverse phase solvent systems common to electrospray ionization MS. The first LC/MS analyses using this novel approach produced sharp chromatographic peaks and good quality full mass range mass spectra for over 25 peptides from injection of only 1 pmol of a tryptic digest of bovine serum albumin using an eluent flow rate of 55 µL min(-1). Similarly, full acquisition LC/MS/MS of the MH(+) ion of the drug clozapine, using the same solvent flow rate, produced a signal-to-noise ratio of 54 for the major fragment ion with injection of only 1 µL of a 2 ppb solution. LC/MS results were acquired on two different manufacturer's mass spectrometers using a Waters Corporation NanoAcquity liquid chromatograph.

17.
J Am Soc Mass Spectrom ; 32(1): 124-132, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33270447

RESUMO

Previously, vacuum matrix-assisted ionization (vMAI) was employed with matrix/analyte sample introduction into the vacuum of a mass spectrometer on a probe sample introduction device. Low attomole detection was achieved, while no carryover was observed even for concentrated samples. Here, we report a new vacuum ionization source designed to duplicate the sensitivity and robustness of probe device while providing fast multisample introduction to vacuum and rapid sequential ionization. Exposure of a sample to the vacuum of the mass spectrometer provides spontaneous ionization of volatile as well as nonvolatile analytes without the need for external energy input. However, the novel source design described herein, in addition to vMAI, can employ a laser to obtain vacuum matrix-assisted laser desorption/ionization (vMALDI). In particular, ionization by vMAI or vMALDI is achieved by using the appropriate matrix. Switching between ionization modes is accomplished in a few seconds. We present results demonstrating the utility of the two ionization methods in combination to improve the molecular analyses of sample composition. In both ionization modes, multiple samples can be sequentially and rapidly acquired to increase throughput in MS. With the prototype source, samples were acquired in as little as 1 s per sample. Exchanging multisample plates can be accomplished in as little as 2 s, suggesting low-cost high-throughput automation when properly developed.

18.
J Am Soc Mass Spectrom ; 32(1): 114-123, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33280376

RESUMO

Sublimation has been known at least since the middle ages. This process is frequently taught in schools through the use of phase diagrams. Astonishingly, such a well-known process appears to still harbor secrets. Under conditions in which compound sublimation occurs, gas-phase ions are frequently detected using mass spectrometry. This was exploited in matrix-assisted ionization in vacuum (vMAI) by adding analyte to subliming compounds used as matrices. Good vMAI matrices were those that ionize the added analyte with high sensitivity, but even matrices that fail this test often produce ions of likely matrix impurities suggesting that they may be good matrices for some compound types. We also show that binary matrices may be manipulated to provide desired properties such as fast analyses and improved sensitivity. These results imply that sublimation in some cases is more complicated than just molecules leaving a surface and that understanding the physical force responsible, and how the nonvolatile compound becomes charged, could lead to improved ionization efficiency for mass spectrometry. Here we provide insights into this process and an explanation of why this unexpected phenomenon has not previously been reported.

19.
Anal Chem ; 82(12): 4998-5001, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20469839

RESUMO

Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

20.
Anal Chem ; 82(22): 9164-8, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20973512

RESUMO

Laserspray ionization (LSI) is a new approach to producing multiply charged ions from solids on surfaces by laser ablation of matrixes commonly used in matrix-assisted laser desorption/ionization (MALDI). We show that the only necessity of the laser for producing multiply charged ions is to deliver particles or droplets of the matrix/analyte mixture to an ionization zone which is simply a heated inlet to the vacuum of the mass spectrometer. Several other methods for delivering sample are demonstrated to produce nearly equivalent results. One example shows the use of an air gun replacing the laser and producing mass spectra of proteins by shooting pellets into a metal plate which has matrix/analyte applied to the opposite side and near the ion entrance inlet to the mass spectrometer. Multiply charged ions of proteins are produced in the absence of any electric field or laser and with only the need of a heated ion entrance capillary or skimmer. The commonality of the matrix with MALDI and the mild conditions necessary for formation of ions brings into question the mechanism of formation of multiply charged ions and the importance of matrix structure in this process.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetofenonas/química , Animais , Bovinos , Insulina/química , Íons/química , Lasers , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA