Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 615(7952): 490-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890227

RESUMO

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Assuntos
Fumarato Hidratase , Interferon beta , Macrófagos , Mitocôndrias , RNA Mitocondrial , Humanos , Argininossuccinato Sintase/metabolismo , Ácido Argininossuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiração Celular , Citosol/metabolismo , Fumarato Hidratase/antagonistas & inibidores , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Interferon beta/biossíntese , Interferon beta/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Metabolômica , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/metabolismo
2.
Nature ; 556(7699): 113-117, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590092

RESUMO

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/química
3.
J Immunol ; 207(10): 2551-2560, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34635586

RESUMO

The protozoan parasite Trypanosoma brucei is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of T. brucei is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Indóis/metabolismo , Macrófagos/imunologia , Prostaglandinas/metabolismo , Tripanossomíase Africana/imunologia , Animais , Humanos , Evasão da Resposta Imune/imunologia , Indóis/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandinas/imunologia , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo
4.
Nat Immunol ; 10(6): 579-86, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19412184

RESUMO

Toll-like receptor 4 (TLR4) signals the induction of transcription factor IRF3-dependent genes from the early endosome via the adaptor TRAM. Here we report a splice variant of TRAM, TAG ('TRAM adaptor with GOLD domain'), which has a Golgi dynamics domain coupled to TRAM's Toll-interleukin 1 receptor domain. After stimulation with lipopolysaccharide, TRAM and TAG localized to late endosomes positive for the GTPase Rab7a. TAG inhibited activation of IRF3 by lipopolysaccharide. Knockdown of TAG with small interfering RNA enhanced induction of the chemokine CCL5 (RANTES), but not of interleukin 8, by lipopolysaccharide in human peripheral blood mononuclear cells. TAG displaced the adaptor TRIF from TRAM. TAG is therefore an example of a specific inhibitor of the adaptor MyD88-independent pathway activated by TLR4. Targeting TAG could be useful in the effort to boost the immunostimulatory effect of TLR4 without causing unwanted inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimiocina CCL5/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/metabolismo , Camundongos , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato , Transfecção , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
Proc Natl Acad Sci U S A ; 113(48): E7778-E7787, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856732

RESUMO

The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1ß. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunidade Inata , Macrófagos/metabolismo , Piruvatos/metabolismo , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Animais , Linhagem Celular , Glicólise , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Evasão da Resposta Imune , Indóis/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/parasitologia , Lipopolissacarídeos/farmacologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Tripanossomíase Africana/parasitologia
6.
Proc Natl Acad Sci U S A ; 112(23): 7231-6, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25995365

RESUMO

The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of NF-κB and miR-155 induction and protects mice from LPS-induced sepsis. Bmal1 has two miR-155-binding sites in its 3'-UTR, and, in response to LPS, miR-155 binds to these two target sites, leading to suppression of Bmal1 mRNA and protein in mice and humans. miR-155 deletion perturbs circadian function, gives rise to a shorter circadian day, and ablates the circadian effect on cytokine responses to LPS. Thus, the molecular clock controls miR-155 induction that can repress BMAL1 directly. This leads to an innate immune response that is variably responsive to challenges across the circadian day.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Ritmo Circadiano , Imunidade Inata , Macrófagos/imunologia , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Fatores de Transcrição ARNTL/genética , Tecido Adiposo/metabolismo , Animais , Citocinas/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo
8.
J Biol Chem ; 288(32): 22893-8, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798679

RESUMO

The interplay between immunity, inflammation, and metabolic changes is a growing field of research. Toll-like receptors and NOD-like receptors are families of innate immune receptors, and their role in the human immune response is well documented. Exciting new evidence is emerging with regard to their role in the regulation of metabolism and the activation of inflammatory pathways during the progression of metabolic disorders such as type 2 diabetes and atherosclerosis. The proinflammatory cytokine IL-1ß appears to play a central role in these disorders. There is also evidence that metabolites such as NAD(+) (acting via deacetylases such as SIRT1 and SIRT2) and succinate (which regulates hypoxia-inducible factor 1α) are signals that regulate innate immunity. In addition, the extracellular overproduction of metabolites such as uric acid and cholesterol crystals acts as a signal sensed by NLRP3, leading to the production of IL-1ß. These observations cast new light on the role of metabolism during host defense and inflammation.


Assuntos
Imunidade Inata/fisiologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sirtuína 1/imunologia , Sirtuína 1/metabolismo , Sirtuína 2/imunologia , Sirtuína 2/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
9.
J Biol Chem ; 288(8): 5616-23, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23319592

RESUMO

The proinflammatory danger signal IL-33, which is released from damaged or dying cells, achieves its effects via the IL-1R family member ST2L. The detection of IL-33 by ST2L initiates downstream signaling pathways that result in the activation of MAPKs and NF-κB. Here, we show that TMED1 associates with ST2L. Using a series of mutation and deletion constructs, we demonstrate that this interaction is mediated by the GOLD domain of TMED1 and the TIR domain of ST2L. Our findings also demonstrate that TMED1 is required for optimal IL-33-induced IL-8 and IL-6 production. This discovery provides additional support to the concept that the TMED family members are important players in innate immune signaling.


Assuntos
Regulação da Expressão Gênica , Interleucinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema Imunitário , Imunoprecipitação , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Microscopia Confocal/métodos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
10.
J Biol Chem ; 288(35): 25066-25075, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23873932

RESUMO

In this study we describe a previously unreported function for NFκB2, an NFκB family transcription factor, in antiviral immunity. NFκB2 is induced in response to poly(I:C), a mimic of viral dsRNA. Poly(I:C), acting via TLR3, induces p52-dependent transactivation of a reporter gene in a manner that requires the kinase activity of IκB kinase ε (IKKε) and the transactivating potential of RelA/p65. We identify a novel NFκB2 binding site in the promoter of the transcription factor Sp1 that is required for Sp1 gene transcription activated by poly(I:C). We show that Sp1 is required for IL-15 induction by both poly(I:C) and respiratory syncytial virus, a response that also requires NFκB2 and IKKε. Our study identifies NFκB2 as a target for IKKε in antiviral immunity and describes, for the first time, a role for NFκB2 in the regulation of gene expression in response to viral infection.


Assuntos
Quinase I-kappa B/imunologia , Interleucina-15/metabolismo , Subunidade p52 de NF-kappa B/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Fator de Transcrição Sp1/imunologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Indutores de Interferon/farmacologia , Interleucina-15/genética , Camundongos , Camundongos Knockout , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Poli I-C/farmacologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo , Elementos de Resposta/genética , Elementos de Resposta/imunologia , Fator de Transcrição Sp1/biossíntese , Fator de Transcrição Sp1/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo
11.
Curr Opin Immunol ; 80: 102268, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446152

RESUMO

The metabolite itaconate (ITA) and its derivatives, both chemically synthesized and endogenous, have emerged as immunoregulators, with roles in limiting inflammation but also having effects on bacterial and viral infection. Some members of the ITA family have been shown to target and inhibit multiple processes in macrophages with recently identified targets, including NLRP3, JAK1, ten-eleven translocation-2 dioxygenases, and TFEB, a key transcription factor for lysosomal biogenesis. They have also been shown to target multiple bacteria, inhibiting their replication, as well as having antiviral effects against viruses such as SARS-CoV2, Zika virus, and Influenza virus. The importance of ITA is highlighted by the fact that several pathogens have developed mechanisms to evade ITA and can manipulate ITA for their own gain. Two newly discovered isomers of ITA, mesaconate and citraconate, are also discussed, which also have immunomodulatory effects. ITA continues to be a fascination, both in terms of inflammation but also as an antibacterial and antiviral agent, with therapeutic potential in immune and inflammatory diseases.


Assuntos
Anti-Infecciosos , COVID-19 , Infecção por Zika virus , Zika virus , Humanos , RNA Viral , SARS-CoV-2 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
12.
Cell Metab ; 34(3): 487-501.e8, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235776

RESUMO

The Krebs cycle-derived metabolite itaconate and its derivatives suppress the inflammatory response in pro-inflammatory "M1" macrophages. However, alternatively activated "M2" macrophages can take up itaconate. We therefore examined the effect of itaconate and 4-octyl itaconate (OI) on M2 macrophage activation. We demonstrate that itaconate and OI inhibit M2 polarization and metabolic remodeling. Examination of IL-4 signaling revealed inhibition of JAK1 and STAT6 phosphorylation by both itaconate and OI. JAK1 activation was also inhibited by OI in response to IL-13, interferon-ß, and interferon-γ in macrophages and in T helper 2 (Th2) cells. Importantly, JAK1 was directly modified by itaconate derivatives at multiple residues, including cysteines 715, 816, 943, and 1130. Itaconate and OI also inhibited JAK1 kinase activity. Finally, OI treatment suppressed M2 macrophage polarization and JAK1 phosphorylation in vivo. We therefore identify itaconate and OI as JAK1 inhibitors, suggesting a new strategy to inhibit JAK1 in M2 macrophage-driven diseases.


Assuntos
Ativação de Macrófagos , Macrófagos , Janus Quinase 1/metabolismo , Janus Quinase 1/farmacologia , Macrófagos/metabolismo , Transdução de Sinais , Succinatos
13.
Subcell Biochem ; 53: 153-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20593266

RESUMO

The stimulation of TLR4 by LPS activates two distinct signaling pathways leading to the expression of diverse inflammatory genes. Intensive studies over the past decade have revealed the components involved in these signaling pathways, however, more recently the focus has shifted somewhat towards the components that regulate these pathways. Several regulatory mechanisms, including localisation of components, splice variants and inhibitory molecules will be discussed in this review.


Assuntos
Endotoxinas/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Processamento Alternativo , Animais , Humanos , Imunidade Inata/imunologia , Chaperonas Moleculares/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética
14.
Cell Metab ; 32(4): 524-536, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32853548

RESUMO

HIF is a transcription factor that plays an essential role in the cellular response to low oxygen, orchestrating a metabolic switch that allows cells to survive in this environment. In immunity, infected and inflamed tissues are often hypoxic, and HIF helps immune cells adapt. HIF-α stabilization can also occur under normoxia during immunity and inflammation, where it regulates metabolism but in addition can directly regulate expression of immune genes. Here we review the role of HIF in immunity, including its role in macrophages, dendritic cells, neutrophils, T cells, and B cells. Its role in immunity is as essential for cellular responses as it is in its original role in hypoxia, with HIF being implicated in multiple inflammatory diseases and in immunosuppression in tumors.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/imunologia , Animais , Humanos
15.
Cell Metab ; 32(3): 468-478.e7, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791101

RESUMO

The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1ß, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1ß release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.


Assuntos
Fatores Imunológicos/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Succinatos/farmacologia , Animais , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência
16.
Cell Rep ; 29(1): 151-161.e5, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577945

RESUMO

The NLRP3 inflammasome is a cytosolic complex sensing phagocytosed material and various damage-associated molecular patterns, triggering production of the pro-inflammatory cytokines interleukin-1 beta (IL)-1ß and IL-18 and promoting pyroptosis. Here, we characterize glutathione transferase omega 1-1 (GSTO1-1), a constitutive deglutathionylating enzyme, as a regulator of the NLRP3 inflammasome. Using a small molecule inhibitor of GSTO1-1 termed C1-27, endogenous GSTO1-1 knockdown, and GSTO1-1-/- mice, we report that GSTO1-1 is involved in NLRP3 inflammasome activation. Mechanistically, GSTO1-1 deglutathionylates cysteine 253 in NIMA related kinase 7 (NEK7) to promote NLRP3 activation. We therefore identify GSTO1-1 as an NLRP3 inflammasome regulator, which has potential as a drug target to limit NLRP3-mediated inflammation.


Assuntos
Glutationa Transferase/metabolismo , Inflamassomos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
Microbiol Spectr ; 5(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28102119

RESUMO

Macrophage activation during phagocytosis or by pattern recognition receptors, such as Toll-like receptor 4, leads to the accumulation of reactive oxygen species (ROS). ROS act as a microbicidal defense mechanism, promoting clearance of infection, allowing for resolution of inflammation. Overproduction of ROS, however, overwhelms our cellular antioxidant defense system, promoting oxidation of protein machinery, leading to macrophage dysregulation and pathophysiology of chronic inflammatory conditions, such as atherosclerosis. Here we will describe the role of the antioxidant tripeptide glutathione (GSH). Until recently, the binding of GSH, termed glutathionylation, was only considered to maintain the integrity of cellular components, limiting the damaging effects of an aberrant oxidative environment. GSH can, however, have positive and negative regulatory effects on protein function in macrophages. GSH regulates protein secretion, driving tumor necrosis factor α release, hypoxia-inducible factor-1α stability, STAT3 phosphorylation, and caspase-1 activation in macrophages. GSH also plays a role in host defense against Listeria monocytogenes, modifying the key virulence protein PrfA in infected macrophages. We will also discuss glutathione transferase omega 1, a deglutathionylating enzyme recently shown to play a role in many aspects of macrophage activity, including metabolism, NF-κB activation, and cell survival pathways. Glutathionylation is emerging as a key regulatory event in macrophage biology that might be susceptible to therapeutic targeting.


Assuntos
Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Humanos
19.
Front Immunol ; 8: 1300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081778

RESUMO

Blocking interaction of the immune checkpoint receptor PD-1 with its ligand PD-L1 is associated with good clinical outcomes in a broad variety of malignancies. High levels of PD-L1 promote tumor growth by restraining CD8+ T-cell responses against tumors. Limiting PD-L1 expression and function is therefore critical for allowing the development of antitumor immune responses and effective tumor clearance. Pyruvate kinase isoform M2 (PKM2) is also a key player in regulating cancer as well as immune responses. PKM2 catalyzes the final rate-limiting step of glycolysis. Furthermore, PKM2 as a dimer translocates to the nucleus, where it stimulates hypoxia-inducible factor 1α (Hif-1α) transactivation domain function and recruitment of p300 to the hypoxia response elements (HRE) of Hif-1α target genes. Here, we provide the first evidence of a role for PKM2 in regulating the expression of PD-L1 on macrophages, dendritic cells (DCs), T cells, and tumor cells. LPS-induced expression of PD-L1 in primary macrophages was inhibited by the PKM2 targeting compound TEPP-46. Furthermore, RNA silencing of PKM2 inhibited LPS-induced PD-L1 expression. This regulation occurs through direct binding of PKM2 and Hif-1α to HRE sites on the PD-L1 promoter. Moreover, TEPP-46 inhibited expression of PD-L1 on macrophages, DCs, and T cells as well as tumor cells in a mouse CT26 cancer model. These findings broaden our understanding of how PKM2 may contribute to tumor progression and may explain the upregulation of PD-L1 in the tumor microenvironment.

20.
Mol Immunol ; 41(6-7): 577-82, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15219996

RESUMO

Toll-like receptors (TLRs) play an essential role in the detection and elimination of invading microbes. They are type-1 transmembrane receptors, containing extracellular leucine rich repeats and an intracellular Toll/interleukin-1 receptor (TIR) domain. Upon stimulation, these receptors interact with specific TIR domain-containing adaptor proteins. Five such adaptors have been discovered to date, MyD88, Mal (MyD88 adaptor-like)/TIRAP (TIR domain-containing adaptor protein), Trif (TIR-domain-containing adaptor inducing interferon-beta), TRAM (Trif-related adaptor molecule) and SARM (SAM and ARM-containing protein). Different TLRs use different combinations of these adaptors, leading to the activation of common and unique pathways involved in the elimination of the invading microbe.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Família Multigênica , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-1/genética , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Humanos , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA