Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 551(7681): 498-502, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143815

RESUMO

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificação
2.
Plant J ; 108(4): 960-976, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34218494

RESUMO

The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs). Here, we present an evaluation of 92 RILs in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative Mapping Population [ITMI/MP]) using newly generated phenotypic data in 3-year experiments (2015), older phenotypic data (1997-2009), and newly created single nucleotide polymorphism (SNP) marker data based on 92 of the original RILs to search for novel and stable QTLs. Our analyses of more than 15 unique traits observed in multiple experiments included analyses of 46 traits in three environments in the USA, 69 traits in eight environments in Germany, 149 traits in 10 environments in Russia, and 28 traits in four environments in India (292 traits in 25 environments) with 7584 SNPs (292 × 7584 = 2 214 528 data points). A total of 874 QTLs were detected with limit of detection (LOD) scores of 2.01-3.0 and 432 QTLs were detected with LOD > 3.0. Moreover, 769 QTLs could be assigned to 183 clusters based on the common markers and relative proximity of related QTLs, indicating gene-rich regions throughout the A, B, and D genomes of common wheat. This upgraded genotype-phenotype information of ITMI/MP can assist breeders and geneticists who can make crosses with suitable RILs to improve or investigate traits of interest.


Assuntos
Marcadores Genéticos/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Produtos Agrícolas , Cruzamentos Genéticos , Grão Comestível/genética , Genótipo , Endogamia , Família Multigênica , Fenótipo
3.
Theor Appl Genet ; 133(9): 2545-2554, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32494869

RESUMO

KEY MESSAGE: A locus for perennial growth was mapped on Lophopyrum elongatum chromosome arm 4ES and introgressed into the wheat genome. Evidence was obtained that in addition to chromosome 4E, other L. elongatum chromosomes control perennial growth. Monocarpy versus polycarpy is one of the fundamental developmental dichotomies in flowering plants. Advances in the understanding of the genetic basis of this dichotomy are important for basic biological reasons and practically for genetic manipulation of growth development in economically important plants. Nine wheat introgression lines (ILs) harboring germplasm of the Lophopyrum elongatum genome present in the octoploid amphiploid Triticum aestivum cv. Chinese Spring (subgenomes AABBDD) × L. elongatum (genomes EE) were selected from a population of ILs developed earlier. These ILs were employed here in genomic analyses of post-sexual cycle regrowth (PSCR), which is a component of polycarpy in caespitose L. elongatum. Analyses of disomic substitution (DS) lines confirmed that L. elongatum chromosome 4E confers PSCR on wheat. The gene was mapped into a short distal region of L. elongatum arm 4ES and was tentatively named Pscr1. ILs harboring recombined chromosomes with 4ES segments, including Pscr1, incorporated into the distal part of the 4DS chromosome arm were identified. Based on the location, Pscr1 is not orthologous with the rice rhizome-development gene Rhz2 located on rice chromosome Os3, which is homoeologous with chromosome 4E, but it may correspond to the Teosinte branched1 (TB1) gene, which is located in the introgressed region in the L. elongatum and Ae. tauschii genomes. A hexaploid IL harboring a large portion of the E-genome but devoid of chromosome 4E also expressed PSCR, which provided evidence that perennial growth is controlled by genes on other L. elongatum chromosomes in addition to 4E.


Assuntos
Genes de Plantas , Melhoramento Vegetal , Poaceae/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Poliploidia
4.
Theor Appl Genet ; 133(4): 1227-1241, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980837

RESUMO

KEY MESSAGE: We introgressed wheatgrass germplasm from the octoploid amphiploid Triticum aestivum× Lophopyrum elongatum into wheat by manipulating the wheat Ph1 gene and discovered and characterized 130 introgression lines harboring single or, in various combinations, complete and recombined L. elongatum chromosomes. Diploid wheatgrass Lophopyrum elongatum (genomes EE) possesses valuable traits for wheat genetics and breeding. We evaluated several strategies for introgression of this germplasm into wheat. To detect it, we developed and validated multiplexed sets of Sequenom MassARRAY single nucleotide polymorphism (SNP) markers, which differentiated disomic and monosomic L. elongatum chromosomes from wheat chromosomes. We identified 130 introgression lines (ILs), which harbored 108 complete and 89 recombined L. elongatum chromosomes. Of the latter, 59 chromosomes were recombined by one or more crossovers and 30 were involved in centromeric (Robertsonian) translocations or were telocentric. To identify wheat chromosomes substituted for or recombined with L. elongatum chromosomes, we genotyped the ILs with the wheat 90-K Infinium SNP array. We found that most of the wheat 90-K probes correctly detected their targets in the L. elongatum genome and showed that some wheat SNPs are ancient and had originated prior to the divergence of the wheat and L. elongatum lineages. Of the 130 ILs, 52% were homozygous for Ph1 deletion and thus are staged to be recombined further. We failed to detect in the L. elongatum genome the 4/5 reciprocal translocation that has been reported in Thinopyrum bessarabicum and several other Triticeae genomes.


Assuntos
Cruzamentos Genéticos , Genoma de Planta , Endogamia , Ploidias , Poaceae/genética , Triticum/genética , Pão , Cromossomos de Plantas/genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único/genética
5.
Plant J ; 95(3): 487-503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29770515

RESUMO

Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Genômica , Poaceae/genética , Aegilops/genética , Brachypodium/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Oryza/genética , Análise de Sequência de DNA , Sorghum/genética , Triticum/genética
6.
Theor Appl Genet ; 132(12): 3265-3276, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529271

RESUMO

KEY MESSAGE: Su1-Ph1, which we previously introgressed into wheat from Aegilops speltoides, is a potent suppressor of Ph1 and a valuable tool for gene introgression in tetraploid wheat. We previously introgressed Su1-Ph1, a suppressor of the wheat Ph1 gene, from Aegilops speltoides into durum wheat cv Langdon (LDN). Here, we evaluated the utility of the introgressed suppressor for inducing introgression of alien germplasm into durum wheat. We built LDN plants heterozygous for Su1-Ph1 that simultaneously contained a single LDN chromosome 5B and a single Ae. searsii chromosome 5Sse, which targeted them for recombination. We genotyped 28 BC1F1 and 84 F2 progeny with the wheat 90-K Illumina single-nucleotide polymorphism assay and detected extensive recombination between the two chromosomes, which we confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH). We constructed BC1F1 and F2 genetic maps that were 65.31 and 63.71 cM long, respectively. Recombination rates between the 5B and 5Sse chromosomes were double the expected rate computed from their meiotic pairing, which we attributed to selection against aneuploid gametes. Recombination rate between 5B and 5Sse was depressed compared to that between 5B chromosomes in the proximal region of the long arm. We integrated ND-FISH signals into the genetic map and constructed a physical map, which we used to map a 172,188,453-bp Ph1 region. Despite the location of the region in a low-recombination region of the 5B chromosome, we detected three crossovers in it. Our data show that Su1-Ph1 is a valuable tool for gene introgression and gene mapping based on recombination between homoeologous chromosomes in wheat.


Assuntos
Aegilops/genética , Melhoramento Vegetal , Recombinação Genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Tetraploidia
7.
Theor Appl Genet ; 132(12): 3449, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578615

RESUMO

Unfortunately, the 9th author name was incorrectly published in the original publication. The complete correct name is given below.

8.
Theor Appl Genet ; 131(11): 2451-2462, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141064

RESUMO

KEY MESSAGE: Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.


Assuntos
Inversão Cromossômica , Cromossomos de Plantas/genética , Evolução Molecular , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , DNA Satélite/genética , Genoma de Planta , Poaceae/genética
9.
Proc Natl Acad Sci U S A ; 110(19): 7940-5, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610408

RESUMO

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Assuntos
Mapeamento de Sequências Contíguas , Genoma de Planta , Poaceae/genética , Centrômero/ultraestrutura , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/ultraestrutura , Evolução Molecular , Genes de Plantas , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Triticum/genética
10.
BMC Genomics ; 16: 707, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383694

RESUMO

BACKGROUND: Mutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis. RESULTS: We first constructed a genetic map for walnut, a woody perennial. All linkage groups were short, and recombination rates were greatly reduced in the centromeric regions. We then used the genetic map to construct a walnut bacterial artificial chromosome (BAC) clone-based physical map, which contained 15,203 exonic BAC-end sequences, and quantified with it synteny between the walnut genome and genomes of three long-lived woody perennials, Vitis vinifera, Populus trichocarpa, and Malus domestica, and three short-lived herbs, Cucumis sativus, Medicago truncatula, and Fragaria vesca. Each measure of synteny we used showed that the genomes of woody perennials were less diverged from the walnut genome than those of herbs. We also estimated the nucleotide substitution rate at silent codon positions in the walnut lineage. It was one-fifth and one-sixth of published nucleotide substitution rates in the Medicago and Arabidopsis lineages, respectively. We uncovered a whole-genome duplication in the walnut lineage, dated it to the neighborhood of the Cretaceous-Tertiary boundary, and allocated the 16 walnut chromosomes into eight homoeologous pairs. We pointed out that during polyploidy-dysploidy cycles, the dominant tendency is to reduce the chromosome number. CONCLUSION: Slow rates of nucleotide substitution are accompanied by slow rates of synteny erosion during genome divergence in woody perennials.


Assuntos
Genoma de Planta/genética , Juglans/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética
11.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38526344

RESUMO

Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Pinus , Pinus/genética , Pinus/parasitologia , Genômica/métodos , Espécies em Perigo de Extinção , Sequenciamento de Nucleotídeos em Larga Escala
12.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014212

RESUMO

Whitebark pine (WBP, Pinus albicaulis ) is a white pine of subalpine regions in western contiguous US and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola ) and additional threats from mountain pine beetle ( Dendroctonus ponderosae ), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short-reads of haploid megametophyte tissue and Oxford Nanopore long-reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gbp of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gbp). Approximately 87.2% (24.0 Gbp) of total sequence was placed on the twelve WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich-repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the three subclasses of NLRs (TNL, CNL, RNL). Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo assembled transcriptomes.

13.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100403

RESUMO

Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.


Assuntos
Sequoia , Evolução Biológica , Cromossomos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Sequoia/genética
14.
BMC Genomics ; 12: 59, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266061

RESUMO

BACKGROUND: Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. RESULTS: An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. CONCLUSION: An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml).


Assuntos
Genoma de Planta/genética , Anotação de Sequência Molecular/métodos , Poaceae/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
15.
Genome ; 54(11): 875-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999208

RESUMO

Reference populations are valuable resources in genetics studies for determining marker order, marker selection, trait mapping, construction of large-insert libraries, cross-referencing marker platforms, and genome sequencing. Reference populations can be propagated indefinitely, they are polymorphic and have normal segregation. Described are two new reference populations who share the same parents of the original wheat reference population Synthetic W7984 (Altar84/ Aegilops tauschii (219) CIGM86.940) x Opata M85, an F(1)-derived doubled haploid population (SynOpDH) of 215 inbred lines and a recombinant inbred population (SynOpRIL) of 2039 F(6) lines derived by single-plant self-pollinations. A linkage map was constructed for the SynOpDH population using 1446 markers. In addition, a core set of 42 SSR markers was genotyped on SynOpRIL. A new approach to identifying a core set of markers used a step-wise selection protocol based on polymorphism, uniform chromosome distribution, and reliability to create nested sets starting with one marker per chromosome, followed by two, four, and six. It is suggested that researchers use these markers as anchors for all future mapping projects to facilitate cross-referencing markers and chromosome locations. To enhance this public resource, researchers are strongly urged to validate line identities and deposit their data in GrainGenes so that others can benefit from the accumulated information.


Assuntos
Cruzamento/métodos , Mapeamento Cromossômico/métodos , Produtos Agrícolas/genética , Triticum/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/fisiologia , Cruzamentos Genéticos , Bases de Dados Genéticas , Genes de Plantas , Marcadores Genéticos , Genótipo , Vigor Híbrido , Repetições de Microssatélites , Polinização , Polimorfismo Genético , Recombinação Genética , Sementes/genética , Sementes/fisiologia , Triticum/fisiologia
16.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34515796

RESUMO

Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.


Assuntos
Aegilops , Genoma de Planta , Melhoramento Vegetal , Poaceae/genética , Triticum/genética
17.
BMC Genomics ; 11: 122, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20170511

RESUMO

BACKGROUND: The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. RESULTS: The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries. CONCLUSIONS: The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes.


Assuntos
Mapeamento de Sequências Contíguas , Genoma de Planta , Plantas/genética , Poliploidia , Cromossomos Artificiais Bacterianos/genética , Impressões Digitais de DNA , DNA de Plantas/genética , Biblioteca Gênica , Hibridização in Situ Fluorescente , Análise de Sequência de DNA/métodos
18.
BMC Genomics ; 11: 702, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156062

RESUMO

BACKGROUND: A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS: Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS: In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Nucleotídeos/genética , Triticum/genética , Códon/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Deleção de Genes , Genes de Plantas/genética , Ligação Genética , Loci Gênicos/genética , Haplótipos/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Poliploidia
19.
G3 (Bethesda) ; 9(3): 619-624, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30622124

RESUMO

Wild emmer (Triticum turgidum ssp. dicoccoides) is the progenitor of all modern cultivated tetraploid wheat. Its genome is large (> 10 Gb) and contains over 80% repeated sequences. The successful whole-genome-shotgun assembly of the wild emmer (accession Zavitan) genome sequence (WEW_v1.0) was an important milestone for wheat genomics. In an effort to improve this assembly, an optical map of accession Zavitan was constructed using Bionano Direct Label and Stain (DLS) technology. The map spanned 10.4 Gb. This map and another map produced earlier by us with the Bionano's Nick Label Repair and Stain (NLRS) technology were used to improve the current wild emmer assembly. The WEW_v1.0 assembly consisted of 151,912 scaffolds. Of them, 3,102 could be confidently aligned on the optical maps. Forty-seven were chimeric. They were disjoined and new scaffolds were assembled with the aid of the optical maps. The total number of scaffolds was reduced from 151,912 to 149,252 and N50 increased from 6.96 Mb to 72.63 Mb. Of the 149,252 scaffolds, 485 scaffolds, which accounted for 97% of the total genome length, were aligned and oriented on genetic maps, and new WEW_v2.0 pseudomolecules were constructed. The new pseudomolecules included 333 scaffolds (68.51 Mb) which were originally unassigned, 226 scaffolds (554.84 Mb) were placed into new locations, and 332 scaffolds (394.83 Mb) were re-oriented. The improved wild emmer genome assembly is an important resource for understanding genomic modification that occurred by domestication.


Assuntos
Genoma de Planta , Triticum/genética , Sequenciamento Completo do Genoma
20.
G3 (Bethesda) ; 9(3): 841-853, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30670607

RESUMO

Numerous quantitative trait loci (QTL) have been mapped in tetraploid and hexaploid wheat and wheat relatives, mostly with simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. To conduct meta-analysis of QTL requires projecting them onto a common genomic framework, either a consensus genetic map or genomic sequence. The latter strategy is pursued here. Of 774 QTL mapped in wheat and wheat relatives found in the literature, 585 (75.6%) were successfully projected onto the Aegilops tauschii pseudomolecules. QTL mapped with SNP markers were more successfully projected (92.2%) than those mapped with SSR markers (66.2%). The QTL were not distributed homogeneously along chromosome arms. Their frequencies increased in the proximal-to-distal direction but declined in the most distal regions and were weakly correlated with recombination rates along the chromosome arms. Databases for projected SSR markers and QTL were constructed and incorporated into the Ae. tauschii JBrowse. To facilitate meta-QTL analysis, eight clusters of QTL were used to estimate standard deviations ([Formula: see text]) of independently mapped QTL projected onto the Ae. tauschii genome sequence. The standard deviations [Formula: see text] were modeled as an exponential decay function of recombination rates along the Ae. tauschii chromosomes. We implemented four hypothesis tests for determining the membership of query QTL. The hypothesis tests and estimation procedure for [Formula: see text] were implemented in a web portal for meta-analysis of projected QTL. Twenty-one QTL for Fusarium head blight resistance mapped on wheat chromosomes 3A, 3B, and 3D were analyzed to illustrate the use of the portal for meta-QTL analyses.


Assuntos
Aegilops/genética , Genoma de Planta , Locos de Características Quantitativas , Análise de Sequência de DNA , Triticum/genética , Análise de Dados , Resistência à Doença/genética , Fusariose , Genômica , Metanálise como Assunto , Repetições de Microssatélites , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA