Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(15): 7731-7746, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986057

RESUMO

The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the homologous recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity.


Assuntos
Replicação do DNA , DNA/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Reparo de DNA por Recombinação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Células HeLa , Humanos , Células MCF-7 , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Radiação Ionizante , Troca de Cromátide Irmã/efeitos da radiação
2.
Biochim Biophys Acta ; 1855(1): 61-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25489989

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumour progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumour chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumour cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumour initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumour formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Imunoterapia , Neoplasias Pancreáticas , Tolerância a Radiação , Animais , Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Imunoterapia/métodos , Inflamação/patologia , Camundongos , Células Neoplásicas Circulantes/imunologia , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Tolerância a Radiação/genética , Neoplasias Pancreáticas
3.
Recent Results Cancer Res ; 198: 107-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27318683

RESUMO

Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.


Assuntos
Receptores ErbB/metabolismo , Neoplasias/terapia , Medicina de Precisão/métodos , Radioterapia (Especialidade)/métodos , Receptores Proteína Tirosina Quinases/metabolismo , Anticorpos Monoclonais/uso terapêutico , Quimiorradioterapia , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Análise de Sobrevida
4.
Cancer Metastasis Rev ; 31(3-4): 823-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22825313

RESUMO

Tumor cells exploit their microenvironment by growth factors and cytokines such as vascular endothelial growth factor (VEGF) to stimulate abnormal vessel formation that is leaky and tortuous, causing irregular blood flow. The combination of poor perfusion, raised interstitial fluid pressure and areas of vascular collapse leads to hypoxia within tumor. The latter activates factors such as hypoxia inducible factor 1 (HIF-1) that serve to make cancer cells more aggressive and also markedly influences the response of malignant tumors to conventional irradiation and chemotherapy. Accumulating data now suggest that blockade of oncogenic signaling, for example by PI3K/Akt/mTOR inhibitors, might consist a promising strategy since these agents do not only possess antitumor effects but can also alter tumor vasculature and oxygenation to improve the response to radiation and chemotherapy. In many cases, these changes are related to downregulation of HIF-1α and VEGF. Here, we review the pathophysiology of tumor microenvironment (TME) and how it adversely affects cancer treatment. The complex interaction of tumor vasculature and radiotherapy is examined together the preclinical evidence supporting a proinvasive/metastatic role for ionising radiation. We will discuss the expanding role of oncogenic signaling, especially PI3K/Akt/mTOR, on tumor angiogenesis. Special emphasis will be paid to the potential of different oncogenic pathways blockade and other indirect antivascular strategies to alter the TME for the benefit of cancer treatment, as an alternative to the classical angiogenetic treatment.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Animais , Hipóxia Celular , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/etiologia , Fosfatidilinositol 3-Quinases/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
EMBO J ; 28(20): 3207-15, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19713937

RESUMO

Base excision repair (BER) is the major cellular pathway involved in removal of endogenous/spontaneous DNA lesions. Here, we study the mechanism that controls the steady-state levels of BER enzymes in human cells. By fractionating human cell extract, we purified the E3 ubiquitin ligase Mule (ARF-BP1/HectH9) as an enzyme that can ubiquitylate DNA polymerase beta (Pol beta), the major BER DNA polymerase. We identified lysines 41, 61 and 81 as the major sites of modification and show that replacement of these lysines to arginines leads to increased protein stability. We further show that the cellular levels of Pol beta and its ubiquitylated derivative are modulated by Mule and ARF and siRNA knockdown of Mule leads to accumulation of Pol beta and increased DNA repair. Our findings provide a novel mechanism regulating steady-state levels of BER proteins.


Assuntos
Reparo do DNA/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Western Blotting , Ensaio Cometa , DNA Polimerase beta/metabolismo , Reparo do DNA/genética , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Ligação Proteica , Interferência de RNA , Proteínas Supressoras de Tumor , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Carcinogenesis ; 33(11): 2026-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22822095

RESUMO

DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Recombinação Homóloga/genética , Tolerância a Radiação/genética , Fase S/fisiologia , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Citometria de Fluxo , Raios gama , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores da Síntese de Ácido Nucleico , RNA Interferente Pequeno/genética , Fase S/efeitos da radiação , Ensaio Tumoral de Célula-Tronco
7.
Cancer Cell ; 6(6): 597-609, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15607964

RESUMO

p53-dependent apoptosis is a major determinant of its tumor suppressor activity and can be triggered by hypoxia. No p53 target is known to be induced by p53 or to mediate p53-dependent apoptosis during hypoxia. We report that p53 can directly upregulate expression of Bnip3L, a cell death inducer. During hypoxia, Bnip3L is highly induced in wild-type p53-expressing cells, in part due to increased recruitment of p53 and CBP to Bnip3L. Apoptosis is reduced in hypoxia-exposed cells with functional p53 following Bnip3L knockdown. In vivo, Bnip3L knockdown promotes tumorigenicity of wild-type versus mutant p53-expressing tumors. Thus, Bnip3L, capable of attenuating tumorigenicity, mediates p53-dependent apoptosis under hypoxia, which provides a novel understanding of p53 in tumor suppression.


Assuntos
Proteínas de Membrana/fisiologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Proteína de Ligação a CREB , Caspase 3 , Caspases/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Cisplatino/farmacologia , Doxiciclina/farmacologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Transportador de Glucose Tipo 1 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteínas de Transporte de Monossacarídeos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Transativadores/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Clin Cancer Res ; 27(9): 2459-2469, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597271

RESUMO

PURPOSE: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.


Assuntos
Atovaquona/farmacologia , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Atovaquona/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fator de Transcrição STAT3/metabolismo
9.
J Cell Biol ; 160(7): 1017-27, 2003 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-12668657

RESUMO

Anumber of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage-induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage-induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/metabolismo , Fosfoproteínas , Proteínas Repressoras/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta à Radiação , Etoposídeo/farmacologia , Fase G2 , Raios gama/efeitos adversos , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/efeitos da radiação , Humanos , Ácidos Hidroxâmicos/farmacologia , Cinética , Mutação , Proteínas Nucleares/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/efeitos da radiação , Células Tumorais Cultivadas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
10.
Eur J Cancer ; 113: 87-95, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30991262

RESUMO

BACKGROUND: Pre-clinically, phosphoinositide 3-kinase (PI3K) inhibition radiosensitises tumours by increasing intrinsic radiosensitivity and by reducing tumour hypoxia. We assessed whether buparlisib, a class 1 PI3K inhibitor, can be safely combined with radiotherapy in patients with non-small cell lung carcinoma (NSCLC) and investigated its effect on tumour hypoxia. METHODS: This was a 3 + 3 dose escalation and dose expansion phase I trial in patients with advanced NSCLC. Buparlisib dose levels were 50 mg, 80 mg and 100 mg once daily orally for 2 weeks, with palliative thoracic radiotherapy (20 Gy in 5 fractions) delivered during week 2. Tumour hypoxic volume (HV) was measured using 18F-fluoromisonidazole positron-emission tomography-computed tomography at baseline and following 1 week of buparlisib. RESULTS: Twenty-one patients were recruited with 9 patients evaluable for maximum tolerated dose (MTD) analysis. No dose-limiting toxicity was reported; therefore, 100 mg was declared the MTD, and 10 patients received this dose in the expansion phase. Ninety-four percent of treatment-related adverse events were ≤grade 2 with fatigue (67%), nausea (24%) and decreased appetite (19%) most common per patient. One serious adverse event (grade 3 hypoalbuminaemia) was possibly related to buparlisib. No unexpected radiotherapy toxicity was reported. Ten (67%) of 15 patients evaluable for imaging analysis were responders with 20% median reduction in HV at the MTD. CONCLUSION: This is the first clinical trial to combine a PI3K inhibitor with radiotherapy in NSCLC and investigate the effects of PI3K inhibition on tumour hypoxia. This combination was well tolerated and PI3K inhibition reduced hypoxia, warranting investigation into whether this novel class of radiosensitisers can improve radiotherapy outcomes.


Assuntos
Adenocarcinoma de Pulmão/terapia , Aminopiridinas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/terapia , Neoplasias Pulmonares/terapia , Morfolinas/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Radiossensibilizantes/uso terapêutico , Hipóxia Tumoral , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/metabolismo , Idoso , Anorexia/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/metabolismo , Quimiorradioterapia , Fadiga/induzido quimicamente , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Misonidazol/análogos & derivados , Náusea/induzido quimicamente , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioterapia
11.
Mol Cell Biol ; 25(5): 2000-13, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15713653

RESUMO

DR5 (also called TRAIL receptor 2 and KILLER) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (also called TRAIL and Apo2 ligand). DR5 is a transcriptional target of p53, and its overexpression induces cell death in vitro. However, the in vivo biology of DR5 has remained largely unexplored. To better understand the role of DR5 in development and in adult tissues, we have created a knockout mouse lacking DR5. This mouse is viable and develops normally with the exception of having an enlarged thymus. We show that DR5 is not expressed in developing embryos but is present in the decidua and chorion early in development. DR5-null mouse embryo fibroblasts expressing E1A are resistant to treatment with TRAIL, suggesting that DR5 may be the primary proapoptotic receptor for TRAIL in the mouse. When exposed to ionizing radiation, DR5-null tissues exhibit reduced amounts of apoptosis compared to wild-type thymus, spleen, Peyer's patches, and the white matter of the brain. In the ileum, colon, and stomach, DR5 deficiency was associated with a subtle phenotype of radiation-induced cell death. These results indicate that DR5 has a limited role during embryogenesis and early stages of development but plays an organ-specific role in the response to DNA-damaging stimuli.


Assuntos
Apoptose , Radiação Ionizante , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Caspase 3 , Caspases/análise , Caspases/metabolismo , Córion/metabolismo , Dano ao DNA , Decídua/metabolismo , Doxorrubicina/farmacologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Marcação de Genes , Masculino , Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Deleção de Sequência/genética , Baço/química , Baço/citologia , Baço/efeitos da radiação , Ligante Indutor de Apoptose Relacionado a TNF , Timo/química , Timo/citologia , Timo/efeitos da radiação , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
12.
Clin Cancer Res ; 24(11): 2482-2490, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420223

RESUMO

Cancer cells have upregulated glycolysis compared with normal cells, which has led many to the assumption that oxidative phosphorylation (OXPHOS) is downregulated in all cancers. However, recent studies have shown that OXPHOS can be also upregulated in certain cancers, including leukemias, lymphomas, pancreatic ductal adenocarcinoma, high OXPHOS subtype melanoma, and endometrial carcinoma, and that this can occur even in the face of active glycolysis. OXPHOS inhibitors could therefore be used to target cancer subtypes in which OXPHOS is upregulated and to alleviate therapeutically adverse tumor hypoxia. Several drugs including metformin, atovaquone, and arsenic trioxide are used clinically for non-oncologic indications, but emerging data demonstrate their potential use as OXPHOS inhibitors. We highlight novel applications of OXPHOS inhibitors with a suitable therapeutic index to target cancer cell metabolism. Clin Cancer Res; 24(11); 2482-90. ©2018 AACR.


Assuntos
Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilação Oxidativa , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Metabolismo Energético/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/etiologia , Fosforilação Oxidativa/efeitos dos fármacos
13.
Int J Radiat Oncol Biol Phys ; 101(1): 97-106, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619982

RESUMO

PURPOSE: To investigate the induction of type III interferons (IFNs) in human cancer cells by gamma-rays. METHODS AND MATERIALS: Type III IFN expression in human cancer cell lines after gamma-ray irradiation in vitro was assessed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Signaling pathways mediating type III IFN induction were examined by a variety of means, including immunoblotting, flow cytometry, confocal imaging, and reverse transcription-quantitative polymerase chain reaction. Key mediators in these pathways were further explored and validated using gene CRISPR knockout or short hairpin RNA knockdown. RESULTS: Exposure to gamma-rays directly induced type III IFNs (mainly IFNL1) in human cancer cell lines in dose- and time-dependent fashions. The induction of IFNL1 was primarily mediated by the cytosolic DNA sensors-STING-TBK1-IRF1 signaling axis, with a lesser contribution from the nuclear factor kappa b signaling in HT29 cells. In addition, type III IFN signaling through its receptors serves as a positive feedback loop, further enhancing IFN expression via up-regulation of the kinases in the STING-TBK1 signaling axis. CONCLUSIONS: Our results suggest that IFNL1 can be up-regulated in human cancer cell lines after gamma-ray treatment. In HT29 cells this induction occurs via the STING pathway, adding another layer of complexity to the understanding of radiation-induced antitumor immunity, and may provide novel insights into IFN-based cancer treatment.


Assuntos
Raios gama/uso terapêutico , Fator Regulador 1 de Interferon/metabolismo , Interleucinas/efeitos da radiação , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Relação Dose-Resposta à Radiação , Edição de Genes/métodos , Técnicas de Inativação de Genes , Células HT29 , Células HeLa , Humanos , Interferons , Interleucinas/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno , Receptores de Interferon/metabolismo , Regulação para Cima
14.
Cell Cycle ; 17(12): 1513-1523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045664

RESUMO

Cyclin-dependent kinase 1 (CDK1) orchestrates the transition from the G2 phase into mitosis and as cancer cells often display enhanced CDK1 activity, it has been proposed as a tumor specific anti-cancer target. Here we show that the effects of CDK1 inhibition are not restricted to tumor cells but can also reduce viability in non-cancer cells and sensitize them to radiation in a cell cycle dependent manner. Radiosensitization by the specific CDK1 inhibitor, RO-3306, was determined by colony formation assays in three tumor lines (HeLa, T24, SQ20B) and three non-cancer lines (HFL1, MRC-5, RPE). Initial results showed that CDK1 inhibition radiosensitized tumor cells, but did not sensitize normal fibroblasts and epithelial cells in colony formation assays despite effective inhibition of CDK1 signaling. Further investigation showed that normal cells were less sensitive to CDK1 inhibition because they remained predominantly in G1 for a prolonged period when plated in colony formation assays. In contrast, inhibiting CDK1 a day after plating, when the cells were going through G2/M phase, reduced their clonogenic survival both with and without radiation. Our finding that inhibition of CDK1 can damage normal cells in a cell cycle dependent manner indicates that targeting CDK1 in cancer patients may lead to toxicity in normal proliferating cells. Furthermore, our finding that cell cycle progression becomes easily stalled in non-cancer cells under normal culture conditions has general implications for testing anti-cancer agents in these cells.


Assuntos
Proteína Quinase CDC2/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Cancer Res ; 65(18): 8256-65, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166302

RESUMO

In tumor cells with mutations in epidermal growth factor receptor (SQ20B), H-Ras (T24), or K-Ras (MIAPACA2 and A549), the inhibition of Akt phosphorylation increases radiation sensitivity in clonogenic assays, suggesting that Akt is a potential molecular target when combined with therapeutic radiation. Insulin resistance and diabetes are recognized side effects of HIV protease inhibitors (HPIs), suggesting that these agents may inhibit Akt signaling. Because activation of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is common in human cancers, we hypothesized that HPIs can inhibit Akt activity resulting in increased tumor cell sensitivity to ionizing radiation-induced cell death. Five first-generation HPIs were subsequently tested and three of the five (amprenavir, nelfinavir, and saquinavir but not ritonavir or indinavir) inhibited Akt phosphorylation at Ser473 at serum concentrations routinely achieved in HIV patients. In both tumor cell colony formation assays and tumor regrowth delay experiments, combinations of drug and radiation exerted synergistic effects compared with either modality alone. In addition, in vivo, doses of amprenavir or nelfinavir comparable with the therapeutic levels achieved in HIV patients were sufficient to down-regulate phosphorylation of Akt in SQ20B and T24 xenografts. Finally, overexpression of active PI3K in cells without activation of Akt resulted in radiation resistance that could be inhibited with HPIs. Because there is abundant safety data on HPIs accumulated in thousands of HIV patients over the last 5 years, these agents are excellent candidates to be tested as radiation sensitizers in clinical trials.


Assuntos
Inibidores da Protease de HIV/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos da radiação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Camundongos , Camundongos Nus , Neoplasias/enzimologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Distribuição Aleatória , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Res ; 65(17): 7902-10, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140961

RESUMO

Ras activation promotes the survival of tumor cells after DNA damage. To reverse this survival advantage, Ras signaling has been targeted for inhibition. Other contributors to Ras-mediated DNA damage survival have been identified using pharmacologic inhibition of signaling, but this approach is limited by the specificity of the inhibitors used and their toxicity. To better define components of Ras signaling that could be inhibited in a clinical setting, RNA interference was used to selectively block expression of specific isoforms of Ras, phosphoinositide 3 (PI3) kinase, and Akt. Inhibition of oncogenic Ras expression decreased both phospho-Akt and phospho-p42/44 mitogen-activated protein (MAP) kinase levels and reduced clonogenic survival. Because pharmacologic inhibition of PI3 kinases and Akt radiosensitized cell lines with active Ras signaling, whereas inhibition of the MAP/extracellular signal-regulated kinase (ERK) kinase/ERK pathway did not, we examined the contribution of PI3 kinases and Akts to radiation survival. Selective inhibition the PI3 kinase P110alpha + p85beta isoforms reduced Akt phosphorylation and radiation survival. Similarly, inhibition of Akt-1 reduced tumor cell radiation survival. Inhibition of Akt-2 or Akt-3 had less effect. Retroviral transduction and overexpression of mouse Akt-1 was shown to rescue cells from inhibition of endogenous human Akt-1 expression. This study shows that Ras signaling to the PI3 kinase-Akt pathway is an important contributor to survival, whether Ras activation results from mutation of ras or overexpression of epidermal growth factor receptor. This study further shows that selective inhibition of the PI3 kinase P110alpha + p85beta isoforms or Akt-1 could be a viable approach to sensitizing many tumor cells to cytotoxic therapies.


Assuntos
Carcinoma/enzimologia , Carcinoma/radioterapia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tolerância a Radiação/fisiologia , Proteínas ras/antagonistas & inibidores , Animais , Carcinoma/genética , Sobrevivência Celular/efeitos da radiação , Cromonas/farmacologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Morfolinas/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , RNA Interferente Pequeno/genética , Tolerância a Radiação/efeitos dos fármacos , Transfecção , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/radioterapia , Proteínas ras/biossíntese , Proteínas ras/genética
17.
Cancer Res ; 65(18): 8433-41, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166322

RESUMO

Activating K-ras mutations are found in approximately 90% of pancreatic carcinomas and may contribute to the poor prognosis of these tumors. Because radiotherapy is frequently used in pancreatic cancer treatment, we assessed the contribution of oncogenic K-ras signaling to pancreatic cancer radiosensitivity. Seven human pancreatic carcinoma lines with activated K-ras and two cell lines with wild-type ras were used to examine clonogenic cell survival after Ras inhibition. Ras inhibition was accomplished by small interfering RNA (siRNA) knockdown of K-ras expression and by blocking Ras processing using a panel of prenyltransferase inhibitors of differing specificity for the two prenyltransferases that modify K-Ras. K-ras knockdown by siRNA or inhibition of prenyltransferase activity resulted in radiation sensitization in vitro and in vivo in tumors with oncogenic K-ras mutations. Inhibition of farnesyltransferase alone was sufficient to radiosensitize most K-ras mutant tumors, although K-Ras prenylation was not blocked. These results show that inhibition of activated K-Ras can promote radiation killing of pancreatic carcinoma in a superadditive manner. The finding that farnesyltransferase inhibition alone radiosensitizes tumors with K-ras mutations implies that a farnesyltransferase inhibitor-sensitive protein other than K-Ras may contribute to survival in the context of mutant K-ras. Farnesyltransferase inhibitors could therefore be of use as sensitizers for pancreatic carcinoma radiotherapy.


Assuntos
Dimetilaliltranstransferase/antagonistas & inibidores , Genes ras/fisiologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/radioterapia , Alquil e Aril Transferases/antagonistas & inibidores , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Farnesiltranstransferase/antagonistas & inibidores , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Tolerância a Radiação/fisiologia
18.
Cancer Biol Ther ; 18(6): 425-432, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28494188

RESUMO

The identification of genetic determinants that underpin tumor radioresistance can help the development of targeted radiosensitizers or aid personalization of radiotherapy treatment. Here we identify signal recognition particle 72kDa (SRP72) as a novel gene involved in radioresistance. Knockdown of SRP72 resulted in significant radiosensitization of HeLa (cervical), PSN-1 (pancreatic), and T24 (bladder), BT-549 (breast) and MCF7 (breast) tumor lines as measured by colony formation assays. SRP72 depletion also resulted in the radiosensitization of normal lung fibroblast cell lines (HFL1 and MRC-5), demonstrating that the effect is not restricted to tumor cells. Increased radiosensitivity was not due to impaired DNA damage signaling or repair as assessed by γ-H2AX foci formation. Instead SRP72 depletion was associated with elevated levels of apoptosis after irradiation, as measured by caspase 3/7 activity, PARP-cleavage and Annexin-V staining, and with an induction of the unfolded protein response. Together, our results show that SRP72 is a novel gene involved in radioresistance.


Assuntos
Tolerância a Radiação , Partícula de Reconhecimento de Sinal/genética , Apoptose , Sobrevivência Celular/efeitos da radiação , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células MCF-7 , Biossíntese de Proteínas , Partícula de Reconhecimento de Sinal/metabolismo , Resposta a Proteínas não Dobradas
19.
Med Phys ; 44(9): 4665-4676, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28644546

RESUMO

PURPOSE: The aim of this study was to determine the relative abilities of compartment models to describe time-courses of 18 F-fluoromisonidazole (FMISO) uptake in tumor voxels of patients with non-small cell lung cancer (NSCLC) imaged using dynamic positron emission tomography. Also to use fits of the best-performing model to investigate changes in fitted rate-constants with distance from the tumor edge. METHODS: Reversible and irreversible two- and three-tissue compartment models were fitted to 24 662 individual voxel time activity curves (TACs) obtained from tumors in nine patients, each imaged twice. Descriptions of the TACs provided by the models were compared using the Akaike and Bayesian information criteria (AIC and BIC). Two different models (two- and three-tissue) were fitted to 30 measured voxel TACs to provide ground-truth TACs for a statistical simulation study. Appropriately scaled noise was added to each of the resulting ground-truth TACs, generating 1000 simulated noisy TACs for each ground-truth TAC. The simulation study was carried out to provide estimates of the accuracy and precision with which parameter values are determined, the estimates being obtained for both assumptions about the ground-truth kinetics. A BIC clustering technique was used to group the fitted rate-constants, taking into consideration the underlying uncertainties on the fitted rate-constants. Voxels were also categorized according to their distance from the tumor edge. RESULTS: For uptake time-courses of individual voxels an irreversible two-tissue compartment model was found to be most precise. The simulation study indicated that this model had a one standard deviation precision of 39% for tumor fractional blood volumes and 37% for the FMISO binding rate-constant. Weighted means of fitted FMISO binding rate-constants of voxels in all tumors rose significantly with increasing distance from the tumor edge, whereas fitted fractional blood volumes fell significantly. When grouped using the BIC clustering, many centrally located voxels had high-fitted FMISO binding rate-constants and low rate-constants for tracer flow between the vasculature and tumor, both indicative of hypoxia. Nevertheless, many of these voxels had tumor-to-blood (TBR) values lower than the 1.4 level commonly expected for hypoxic tissues, possibly due to the low rate-constants for tracer flow between the vasculature and tumor cells in these voxels. CONCLUSIONS: Time-courses of FMISO uptake in NSCLC tumor voxels are best analyzed using an irreversible two-tissue compartment model, fits of which provide more precise parameter values than those of a three-tissue model. Changes in fitted model parameter values indicate that levels of hypoxia rise with increasing distance from tumor edges. The average FMISO binding rate-constant is higher for voxels in tumor centers than in the next tumor layer out, but the average value of the more simplistic TBR metric is lower in tumor centers. For both metrics, higher values might be considered indicative of hypoxia, and the mismatch in this case is likely to be due to poor perfusion at the tumor center. Kinetics analysis of dynamic PET images may therefore provide more accurate measures of the hypoxic status of such regions than the simpler TBR metric, a hypothesis we are presently exploring in a study of tumor imaging versus histopathology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Teorema de Bayes , Humanos , Cinética , Misonidazol/análogos & derivados , Misonidazol/farmacocinética , Radiossensibilizantes/farmacocinética , Compostos Radiofarmacêuticos
20.
EMBO Mol Med ; 9(2): 167-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27932443

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered a non-immunogenic tumor, and immune checkpoint inhibitor monotherapy lacks efficacy in this disease. Radiotherapy (RT) can stimulate the immune system. Here, we show that treatment of KPC and Pan02 murine PDAC cells with RT and gemcitabine upregulated PD-L1 expression in a JAK/Stat1-dependent manner. In vitro, PD-L1 inhibition did not alter radio- and chemosensitivity. In vivo, addition of anti-PD-L1 to high (12, 5 × 3, 20 Gy) but not low (6, 5 × 2 Gy) RT doses significantly improved tumor response in KPC and Pan02 allografts. Radiosensitization after PD-L1 blockade was associated with reduced CD11b+Gr1+ myeloid cell infiltration and enhanced CD45+CD8+ T-cell infiltration with concomitant upregulation of T-cell activation markers including CD69, CD44, and FasL, and increased CD8:Treg ratio. Depletion of CD8+ T cells abrogated radiosensitization by anti-PD-L1. Blockade of PD-L1 further augmented the effect of high RT doses (12 Gy) in preventing development of liver metastases. Exploring multiple mathematical models reveals a mechanism able to explain the observed synergy between RT and anti-PD-L1 therapy. Our findings provide a rationale for testing the use of immune checkpoint inhibitors with RT in PDAC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Desoxicitidina/análogos & derivados , Radiossensibilizantes/administração & dosagem , Animais , Linfócitos T CD8-Positivos , Desoxicitidina/administração & dosagem , Modelos Animais de Doenças , Camundongos , Modelos Teóricos , Resultado do Tratamento , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA