Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 99(2): 1153-1222, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724669

RESUMO

UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Glicosiltransferases/classificação , Animais , Mamíferos/metabolismo , Família Multigênica , Transdução de Sinais/fisiologia
2.
J Biol Chem ; 299(12): 105368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866634

RESUMO

Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Citocromo P-450 CYP2C9 , Dapsona , Flurbiprofeno , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dapsona/metabolismo , Flurbiprofeno/metabolismo , Cinética , Naproxeno/metabolismo , Humanos
3.
Drug Metab Dispos ; 52(6): 526-538, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565302

RESUMO

The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.


Assuntos
Éxons , Glucuronosiltransferase , Sítios de Splice de RNA , Humanos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Éxons/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Domínios Proteicos/genética , Processamento Alternativo/genética
4.
BMC Cancer ; 24(1): 379, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528478

RESUMO

BACKGROUND: Multiple studies have indicated that patients with high body mass index (BMI) may have favourable survival outcomes following treatment with an immune checkpoint inhibitor (ICI). However, this evidence is limited by several factors, notably the minimal evidence from randomised controlled trials (RCTs), the use of categorised BMI with inconsistent cut point definitions, and minimal investigation of contemporary combination ICI therapy. Moreover, whether overweight and obese patients gain a larger benefit from contemporary frontline chemoimmunotherapy in non-small cell lung cancer (NSCLC) is unclear. METHODS: This secondary analysis pooled individual patient data from the intention-to-treat population of the IMpower130 and IMpower150 RCTs comparing chemoimmunotherapy versus chemotherapy. Co-primary outcomes were overall survival (OS) and progression-free survival (PFS). The potentially non-linear relationship between BMI and chemoimmunotherapy treatment effect was evaluated using Multivariable Fractional Polynomial Interaction (MFPI). As a sensitivity analysis, chemoimmunotherapy treatment effect (chemoimmunotherapy versus chemotherapy) on survival was also estimated for each BMI subgroup defined by World Health Organisation classification. Exploratory analyses in the respective chemoimmunotherapy and chemotherapy cohort were undertaken to examine the survival outcomes among BMI subgroups. RESULTS: A total of 1282 patients were included. From the MFPI analysis, BMI was not significantly associated with chemoimmunotherapy treatment effect with respect to either OS (p = 0.71) or PFS (p = 0.35). This was supported by the sensitivity analyses that demonstrated no significant treatment effect improvement in OS/PFS among overweight or obese patients compared to normal weight patients (OS: normal BMI HR = 0.74 95% CI 0.59-0.93, overweight HR = 0.78 95% CI 0.61-1.01, obese HR = 0.84 95% CI 0.59-1.20). Exploratory analyses further highlighted that survival outcomes were not significantly different across BMI subgroups in either the chemoimmunotherapy therapy cohort (Median OS: normal BMI 19.9 months, overweight 17.9 months, and obese 19.5 months, p = 0.7) or the chemotherapy cohort (Median OS: normal 14.1 months, overweight 15.9 months, and obese 16.7 months, p = 0.7). CONCLUSION: There was no association between high BMI (overweight or obese individuals) and enhanced chemoimmunotherapy treatment benefit in front-line treatment of advanced non-squamous NSCLC. This contrasts with previous publications that showed a superior treatment benefit in overweight and obese patients treated with immunotherapy given without chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Índice de Massa Corporal , Sobrepeso , Obesidade/complicações , Imunoterapia
5.
BMC Med ; 21(1): 400, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872545

RESUMO

Data sharing is essential for promoting scientific discoveries and informed decision-making in clinical practice. In 2013, PhRMA/EFPIA recognised the importance of data sharing and supported initiatives to enhance clinical trial data transparency and promote scientific advancements. However, despite these commitments, recent investigations indicate significant scope for improvements in data sharing by the pharmaceutical industry. Drawing on a decade of literature and policy developments, this article presents perspectives from a multidisciplinary team of researchers, clinicians, and consumers. The focus is on policy and process updates to the PhRMA/EFPIA 2013 data sharing commitments, aiming to enhance the sharing and accessibility of participant-level data, clinical study reports, protocols, statistical analysis plans, lay summaries, and result publications from pharmaceutical industry-sponsored trials. The proposed updates provide clear recommendations regarding which data should be shared, when it should be shared, and under what conditions. The suggested improvements aim to develop a data sharing ecosystem that supports science and patient-centred care. Good data sharing principles require resources, time, and commitment. Notwithstanding these challenges, enhancing data sharing is necessary for efficient resource utilization, increased scientific collaboration, and better decision-making for patients and healthcare professionals.


Assuntos
Ensaios Clínicos como Assunto , Disseminação de Informação , Humanos , Políticas , Indústria Farmacêutica
6.
Mol Psychiatry ; 27(1): 88-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34376825

RESUMO

Current medications for schizophrenia typically modulate dopaminergic neurotransmission. While affecting positive symptoms, antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairment. Moreover, newer 'atypical' antipsychotic drugs also have significant metabolic adverse-effects. The recent positive clinical trial of the novel drug candidate SEP-363856, which targets non-dopamine receptors (trace amine-associated receptor and the 5HT1A receptor), is a potentially promising development for the management of schizophrenia. In this perspective, we briefly overview the role of TAAR1 and the 5HT1A receptor in schizophrenia and explore the specific binding characteristics of SEP-363856 at these receptors. Molecular dynamics simulations (MDS) indicate that SEP-363856 interacts with a small, common set of conserved residues within the TAAR1 and 5HT1A ligand-binding domain. The primary interaction of SEP-363856 involves binding to the negatively charged aspartate residue (Asp1033.32, TAAR1; Asp1163.32, 5HT1A). In general, the binding of SEP-363856 within TAAR1 involves a greater number of aromatic contacts compared to 5HT1A. MDS provides important insights into the molecular basis of binding site interactions of SEP-363856 with TAAR1 and the 5HT1A receptor, which will be beneficial for understanding the pharmacological uniqueness of SEP-363856 and for the design of novel drug candidates for these newly targeted receptors in the treatment of schizophrenia and related disorders.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Humanos , Piranos/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/tratamento farmacológico
7.
Br J Cancer ; 126(1): 42-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711947

RESUMO

BACKGROUND: Proton pump inhibitors (PPIs) are commonly used concomitant to cancer treatment and they induce gut microbiota changes. It is increasingly apparent that gut dysbiosis can reduce the effectiveness of immune checkpoint inhibitors (ICI). However, little is known about PPI effects on outcomes with ICIs, particularly in combination, ICI approaches. METHODS: Post hoc, Cox proportional hazard analysis of phase III trial, IMpower150 was conducted to assess the association between PPI use and overall survival (OS) and progression-free survival (PFS) in chemotherapy-naive, metastatic non-squamous non-small cell lung cancer participants randomised atezolizumab plus carboplatin plus paclitaxel (ACP), bevacizumab plus carboplatin plus paclitaxel (BCP), or atezolizumab plus BCP (ABCP). PPI use was defined as any PPI administration between 30 days prior and 30 days after treatment initiation. RESULTS: Of 1202 participants, 441 (37%) received a PPI. PPI use was independently associated with worse OS (n = 748; hazard ratio (HR) [95% confidence interval (CI)] = 1.53 [1.21-1.95], P < 0.001) and PFS (1.34 [1.12-1.61], P = 0.002) in the pooled atezolizumab arms (ACP plus ABCP). This association was not apparent for BCP (n = 368; OS 1.01 [0.73-1.39], P = 0.969; PFS 0.97 [0.76-1.25], P = 0.827). The observed OS treatment effect (HR 95% CI) of the atezolizumab (ACP plus ABCP) arms vs BCP was 1.03 (0.77-1.36) for PPI users compared to 0.68 (0.54-0.86) for non-users (P [interaction] = 0.028). A similar association was noted for ABCP vs BCP (PPI users 0.96 [0.68-1.35]; PPI non-users 0.66 [0.50-0.87]; P [interaction] = 0.095). CONCLUSIONS: PPI use was a negative prognostic marker in patients treated with ACP or ABCP, but not BCP. The analysis suggests that PPIs negatively influence the magnitude of ICI efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores da Bomba de Prótons/uso terapêutico , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Bevacizumab/administração & dosagem , Carboplatina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Taxa de Sobrevida , Resultado do Tratamento
8.
Drug Metab Rev ; 54(2): 120-140, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35275773

RESUMO

The human UGT gene superfamily is divided into four subfamilies (UGT1, UGT2, UGT3 and UGT8) that encodes 22 functional enzymes. UGTs are critical for the metabolism and clearance of numerous endogenous and exogenous compounds, including steroid hormones, bile acids, bilirubin, fatty acids, carcinogens, and therapeutic drugs. Therefore, the expression and activities of UGTs are tightly regulated by multiple processes at the transcriptional, post-transcriptional and post-translational levels. During recent years, nearly twenty studies have investigated the post-transcriptional regulation of UGT genes by miRNAs using human cancer cell lines (predominantly liver cancer). Overall, 14 of the 22 UGT mRNAs (1A1, 1A3, 1A4, 1A6, 1A8, 1A9, 1A10, 2A1, 2B4, 2B7, 2B10, 2B15, 2B17, UGT8) have been shown to be regulated by various miRNAs through binding to their respective 3' untranslated regions (3'UTRs). Three 3'UTRs (UGT1A, UGT2B7 and UGT2B15) contain the largest number of functional miRNA target sites; in particular, the UGT1A 3'UTR contains binding sites for 12 miRNAs (548d-5p, 183-5p, 214-5p, 486-3p, 200a-3p, 491-3p, 141-3p, 298, 103b, 376b-3p, 21-3p, 1286). Although all nine UGT1A family members have the same 3'UTR, these miRNA target sites appear to be functional in an isoform-specific and cellular context-dependent manner. Collectively, these observations demonstrate that miRNAs represent important post-transcriptional regulators of the UGT gene superfamily. In this article, we present a comprehensive review of reported UGT/miRNA regulation studies, describe polymorphisms within functional miRNA target sites that may affect their functionalities, and discuss potential cooperative and competitive regulation of UGT mRNAs by miRNAs through adjacently located miRNA target sites.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas , Ácidos Graxos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glicosiltransferases/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Difosfato de Uridina
9.
Bioorg Med Chem ; 72: 116970, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063653

RESUMO

Nitric oxide (NO) is a signalling molecule that controls a multitude of regulatory functions including neurotransmission, vascular tone, immune response, and angiogenesis. Regulating NO concentrations in cells using small molecules is an active area of research in the treatment of several pathologies such as cardiovascular disease, cancer, and inflammatory conditions. Small molecule-inhibition of critical NO regulatory enzymes, NO synthase (NOS), arginase, and dimethylarginine dimethyaminohydrolase-1 (DDAH1), has shown therapeutic benefits as well as limitations and is a focus of current research.In recent years, DDAH1 has been explored as a potential target to indirectly regulate NO in diseases characterized by excessive NO production. This review discusses the biological and pathophysiological role of the NO pathway, the existing inhibitors of NOS, arginase and DDAH1, and the conventional and structure-guided structure-activity relationship studies involved in their discovery. The key structural elements of amino acid-derived inhibitors responsible for selective inhibition of each enzyme, and the chemical features responsible for dual enzyme inhibition are also discussed. Finally, a synthetic scheme for developing both selective and dual inhibitors using common starting materials is provided, offering unique insights in the quest for the rational design of novel NO pathway inhibitors.


Assuntos
Arginase , Óxido Nítrico , Amidoidrolases , Arginina/metabolismo , Arginina/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase
10.
Mol Pharmacol ; 99(6): 488-503, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824186

RESUMO

The human UDP-glycosyltransferase (UGT) gene superfamily generates 22 canonical transcripts coding for functional enzymes and also produces nearly 150 variant UGT transcripts through alternative splicing and intergenic splicing. In the present study, our analysis of circRNA databases identified backsplicing events that predicted 85 circRNAs from UGT genes, with 33, 11, and 19 circRNAs from UGT1A, UGT2B4, UGT8, respectively. Most of these UGT circRNAs were reported by one database and had low abundance in cell- or tissue-specific contexts. Using reverse-transcriptase polymerase chain reaction with divergent primers and cDNA samples from human tissues and cell lines, we found 13 circRNAs from four UGT genes: UGT1A (three), UGT2B7 (one), UGT2B10 (one), and UGT8 (eight). Notably, all eight UGT8 circRNAs contain open reading frames that include the canonical start AUG codon and encode variant proteins that all have the common 274-amino acidN-terminal region of wild-type UGT8 protein. We further showed that one UGT8 circRNA (circ_UGT8-1) was broadly expressed in human tissues and cell lines, resistant to RNase R digestion, and predominately present in the cytoplasm. We cloned five UGT8 circRNAs into the Zinc finger with KRAB and SCAN domains 1 vector and transfected them into HEK293T cells. All these vectors produced both circRNAsand linear transcripts with varying circular/linear ratios (0.17-1.14).Western blotting and mass spectrometry assays revealed that only linear transcripts and not circRNAs were translated. In conclusion, our findings of nearly 100 circRNAs greatly expand the complexity and diversity of the UGT transcriptome; however, UGT circRNAs are expressed at a very low level in specific cellular contexts, and their biologic functions remain to be determined. SIGNIFICANCE STATEMENT: The human UGT gene transcriptome comprises 22 canonical transcripts coding for functional enzymes and approximately 150 alternatively spliced and chimeric variant transcripts. The present study identified nearly 100 circRNAs from UGT genes, thus greatly expanding the complexity and diversity of the UGT transcriptome. UGT circRNAs were expressed broadly in human tissues and cell lines; however, most showed very low abundance in tissue- and cell-specific contexts, and therefore their biological functions remain to be investigated.


Assuntos
Glucuronosiltransferase/genética , RNA Circular/metabolismo , Transcriptoma , Processamento Alternativo , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , RNA Circular/genética
11.
Mol Psychiatry ; 25(9): 1910-1919, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32203158

RESUMO

Clozapine is the gold-standard agent for treatment resistant schizophrenia but its mechanism of action remains unclear. There is emerging evidence of the potential role of the GABAB receptor in the pathogenesis of schizophrenia. It has been hypothesised that clozapine can mediate its actions via the GABAB receptor. Baclofen is currently recognised as the prototype GABAB receptor agonist. There are some potential clinical similarities between clozapine and baclofen. Indeed, baclofen has been previously proposed for use as an antipsychotic agent. Our analysis of the X-ray crystal structure of GABAB receptor along with molecular docking calculations, suggests that clozapine could directly bind to the GABAB receptor similar to that of baclofen. This finding could lead to a better understanding of the pharmacological uniqueness of clozapine, potential development of a biomarker for treatment resistant schizophrenia and the development of more targeted treatments leading to personalisation of treatment.


Assuntos
Clozapina , Receptores de GABA-B , Baclofeno , Clozapina/farmacologia , Simulação de Acoplamento Molecular
12.
BMC Cardiovasc Disord ; 21(1): 104, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602125

RESUMO

BACKGROUND: Studies have demonstrated that heart failure (HF) patients who receive direct pharmacist input as part of multidisciplinary care have better clinical outcomes. This study evaluated/compared the difference in prescribing practices of guideline-directed medical therapy (GDMT) for chronic HF patients between two multidisciplinary clinics-with and without the direct involvement of a pharmacist. METHODS: A retrospective audit of chronic HF patients, presenting to two multidisciplinary outpatient clinics between March 2005 and January 2017, was performed; a Multidisciplinary Ambulatory Consulting Service (MACS) with an integrated pharmacist model of care and a General Cardiology Heart Failure Service (GCHFS) clinic, without the active involvement of a pharmacist. RESULTS: MACS clinic patients were significantly older (80 vs. 73 years, p < .001), more likely to be female (p < .001), and had significantly higher systolic (123 vs. 112 mmHg, p < .001) and diastolic (67 vs. 60 mmHg, p < .05) blood pressures compared to the GCHF clinic patients. Moreover, the MACS clinic patients showed more polypharmacy and higher prevalence of multiple comorbidities. Both clinics had similar prescribing rates of GDMT and achieved maximal tolerated doses of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in HFrEF. However, HFpEF patients in the MACS clinic were significantly more likely to be prescribed ACEIs/ARBs (70.5% vs. 56.2%, p = 0.0314) than the GCHFS patients. Patients with both HFrEF and HFpEF (MACS clinic) were significantly less likely to be prescribed ß-blockers and mineralocorticoid receptor antagonists. Use of digoxin in chronic atrial fibrillation (AF) in MACS clinic was significantly higher in HFrEF patients (82.5% vs. 58.5%, p = 0.004), but the number of people anticoagulated in presence of AF (27.1% vs. 48.0%, p = 0.002) and prescribed diuretics (84.0% vs. 94.5%, p = 0.022) were significantly lower in HFpEF patients attending the MACS clinic. Age, heart rate, systolic blood pressure (SBP), anemia, chronic renal failure, and other comorbidities were the main significant predictors of utilization of GDMT in a multivariate binary logistic regression. CONCLUSIONS: Lower prescription rates of some medications in the pharmacist-involved multidisciplinary team were found. Careful consideration of demographic and clinical characteristics, contraindications for use of medications, polypharmacy, and underlying comorbidities is necessary to achieve best practice.


Assuntos
Instituições de Assistência Ambulatorial/tendências , Assistência Ambulatorial/tendências , Fármacos Cardiovasculares/uso terapêutico , Fidelidade a Diretrizes/tendências , Insuficiência Cardíaca/tratamento farmacológico , Guias de Prática Clínica como Assunto , Padrões de Prática Médica/tendências , Adulto , Idoso , Idoso de 80 Anos ou mais , Fármacos Cardiovasculares/efeitos adversos , Doença Crônica , Comorbidade , Prescrições de Medicamentos , Quimioterapia Combinada , Uso de Medicamentos/tendências , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Austrália do Sul/epidemiologia , Fatores de Tempo
13.
Mol Pharmacol ; 98(6): 710-718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33008919

RESUMO

Enzymes of the human UDP-glycosyltransferase (UGT) superfamily typically catalyze the covalent addition of the sugar moiety from a UDP-sugar cofactor to relatively low-molecular weight lipophilic compounds. Although UDP-glucuronic acid (UDP-GlcUA) is most commonly employed as the cofactor by UGT1 and UGT2 family enzymes, UGT2B7 and several other enzymes can use both UDP-GlcUA and UDP-glucose (UDP-Glc), leading to the formation of glucuronide and glucoside conjugates. An investigation of UGT2B7-catalyzed morphine glycosidation indicated that glucuronidation is the principal route of metabolism because the binding affinity of UDP-GlcUA is higher than that of UDP-Glc. Currently, it is unclear which residues in the UGT2B7 cofactor binding domain are responsible for the preferential binding of UDP-GlcUA. Here, molecular dynamics (MD) simulations were performed together with site-directed mutagenesis and enzyme kinetic studies to identify residues within the UGT2B7 binding site responsible for the selective cofactor binding. MD simulations demonstrated that Arg259, which is located within the N-terminal domain, specifically interacts with UDP-GlcUA, whereby the side chain of Arg259 H-bonds and forms a salt bridge with the carboxylate group of glucuronic acid. Consistent with the MD simulations, substitution of Arg259 with Leu resulted in the loss of morphine, 4-methylumbelliferone, and zidovudine glucuronidation activity, but morphine glucosidation was preserved. SIGNIFICANCE STATEMENT: Despite the importance of uridine diphosphate glycosyltransferase (UGT) enzymes in drug and chemical metabolism, cofactor binding interactions are incompletely understood, as is the molecular basis for preferential glucuronidation by UGT1 and UGT2 family enzymes. The study demonstrated that long timescale molecular dynamics (MD) simulations with a UGT2B7 homology model can be used to identify critical binding interactions of a UGT protein with UDP-sugar cofactors. Further, the data provide a basis for the application of MD simulations to the elucidation of UGT-aglycone interactions.


Assuntos
Arginina/genética , Glucuronosiltransferase/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Sítios de Ligação/genética , Coenzimas/metabolismo , Cristalografia por Raios X , Glucosiltransferases/genética , Glucosiltransferases/ultraestrutura , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glicosídeos/metabolismo , Células HEK293 , Humanos , Himecromona/metabolismo , Medicago truncatula , Simulação de Dinâmica Molecular , Morfina/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , Zidovudina/metabolismo
14.
Breast Cancer Res Treat ; 178(2): 473-477, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399933

RESUMO

PURPOSE: Ado-trastuzumab emtansine (T-DM1) treatment in HER2+ advanced breast cancer patients is generally well tolerated, but when adverse events occur dose adjustments may be required. This study evaluated the impact of early adverse events requiring T-DM1 dose interruptions or reductions on overall survival (OS) and progression-free survival (PFS) in HER2+ advanced metastatic breast cancer patients in the clinical trials EMILIA and TH3RESA. PATIENTS AND METHODS: The study included 893 participants initiated on T-DM1 treatment. A landmark approach set at 4 months was used to evaluate the association between early adverse events requiring T-DM1 dose interruptions or reductions and OS/PFS. Cox proportional hazard analysis modeled the association between events requiring T-DM1 dose interruptions or reductions and OS/PFS. Associations were reported as hazard ratios with 95% confidence intervals. RESULTS: Adverse events requiring T-DM1 dose interruptions or reductions within the first 4 months of treatment were not significantly associated with OS (hazard ratio (HR) [95% CI]: dose interrupted = 1.15 [0.85-1.55]; dose reduced = 0.75 [0.49-1.14]; P = 0.214) nor PFS (hazard ratio (HR) [95% CI]: dose interrupted = 1.13 [0.87-1.48]; dose reduced = 0.90 [0.62-1.31]; P = 0.534). CONCLUSION: The occurrence of early adverse events requiring T-DM1 dose interruptions or reductions do not appear to be associated with altered long-term OS or PFS within a pooled analysis of data from EMILIA and TH3RESA.


Assuntos
Ado-Trastuzumab Emtansina/administração & dosagem , Ado-Trastuzumab Emtansina/efeitos adversos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , Resultado do Tratamento
15.
J Pharmacol Exp Ther ; 368(3): 363-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578287

RESUMO

Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) are called ADME genes. Currently, 298 genes that encode phase I and II drug metabolizing enzymes, transporters, and modifiers are designated as ADME genes by the PharmaADME Consortium. ADME genes are highly expressed in the liver and their levels can be influenced by liver diseases such as hepatocellular carcinoma (HCC). In this study, we obtained RNA-sequencing and microRNA (miRNA)-sequencing data from 371 HCC patients via The Cancer Genome Atlas liver hepatocellular carcinoma project and performed ADME gene-targeted differential gene expression analysis and expression correlation analysis. Two hundred thirty-three of the 298 ADME genes (78%) were expressed in HCC. Of these genes, almost one-quarter (58 genes) were significantly downregulated, while only 6% (15) were upregulated in HCC relative to healthy liver. Moreover, one-half (14/28) of the core ADME genes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, CYP3A4, NAT1, NAT2, UGT2B7, SLC22A1, SLCO1B1, and SLCO1B3) were downregulated. In addition, about one-half of the core ADME genes were positively correlated with each other and were also positively (AHR, ARNT, HNF4A, PXR, CAR, PPARA, and RXRA) or negatively (PPARD and PPARG) correlated with transcription factors known as ADME modifiers. Finally, we show that most miRNAs known to regulate core ADME genes are upregulated in HCC. Collectively, these data reveal 1) an extensive transcription factor-mediated ADME coexpression network in the liver that efficiently coordinates the metabolism and elimination of endogenous and exogenous compounds; and 2) a widespread deregulation of this network in HCC, most likely due to deregulation of both transcriptional and post-transcriptional (miRNA) pathways.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Absorção Gastrointestinal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Estudos de Coortes , Feminino , Absorção Gastrointestinal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Distribuição Tecidual , Adulto Jovem
16.
J Card Fail ; 25(9): 744-756, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31351119

RESUMO

BACKGROUND: There is evidence that heart failure (HF) patients who receive pharmacist care have better clinical outcomes. METHODS AND RESULTS: English-language peer-reviewed randomized controlled trials comparing the pharmacist-involved multidisciplinary intervention with usual care were included. We searched PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, Scopus, and the Cochrane Library from inception through March 2017. Cochrane method for risk of bias was used to assess within and between studies. 18 RCTs (n = 4630) were included for systematic review, and 16 (n = 4447) for meta-analysis. Meta-analysis showed a significant reduction in HF hospitalizations {odds ratio (OR) 0.72 [95% confidence interval (CI) 0.55-0.93], P = .01, I2  =  39%} but no effect on HF mortality. Similarly, a significant reduction in all-cause hospitalizations [OR 0.76, 95% CI (0.60-0.96), P = .02, I2  =  52%] but no effect on all-cause mortality was revealed. The overall trend was an improvement in medication adherence. There were significant improvements in HF knowledge (P<.05), but no significant improvements were found on health care costs and self-care. CONCLUSIONS: The pharmacist is a vital member of a multidisciplinary team in HF management to improve clinical outcomes. There was a great deal of variability about which specific intervention is most effective in improving clinical outcomes.


Assuntos
Insuficiência Cardíaca , Equipe de Assistência ao Paciente/normas , Farmacêuticos , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Hospitalização/estatística & dados numéricos , Humanos , Mortalidade , Papel Profissional , Melhoria de Qualidade , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Drug Metab Dispos ; 47(6): 616-631, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30902802

RESUMO

Protein kinase inhibitors (KIs), which are mainly biotransformed by CYP3A4-catalyzed oxidation, represent a rapidly expanding class of drugs used primarily for the treatment of cancer. Ligand- and structure-based methods were applied here to investigate whether computational approaches may be used to predict the site(s) of metabolism (SOM) of KIs and to identify amino acids within the CYP3A4 active site involved in KI binding. A data set of the experimentally determined SOMs of 31 KIs known to undergo biotransformation by CYP3A4 was collated. The structure-based (molecular docking) approach employed three CYP3A4 X-ray crystal structures to account for structural plasticity of this enzyme. Docking pose and SOM predictivity were influenced by the X-ray crystal template used for docking and the scoring function used for ranking binding poses. The best prediction of SOM (77%) was achieved using the substrate (bromoergocryptine)-bound X-ray crystal template together with the potential of mean force score. Binding interactions of KIs with CYP3A4 active site residues were generally similar to those observed for other substrates of this enzyme. The ligand-based molecular superposition approach, using bromoergocryptine from the X-ray cocrystal structure as a template, poorly predicted (42%) the SOM of KIs, although predictivity improved to 71% when the docked conformation of sorafenib was used as the template. Among the web-based approaches examined, all web servers provided excellent predictivity, with one web server predicting the SOM of 87% of the data set molecules. Computational approaches may be used to predict the SOM of KIs, and presumably other classes of CYP3A4 substrates, but predictivity varies between methods.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Domínio Catalítico/fisiologia , Humanos , Ligantes , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/fisiologia , Conformação Proteica
18.
Mol Pharmacol ; 93(5): 541-552, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29519853

RESUMO

The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.


Assuntos
Fator de Transcrição CDX2/metabolismo , Glucuronosiltransferase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Intestinos/enzimologia , Células CACO-2 , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/genética , Humanos , Fígado/enzimologia , Regiões Promotoras Genéticas , UDP-Glucuronosiltransferase 1A
19.
Mol Pharmacol ; 94(3): 938-952, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959221

RESUMO

Recent studies have investigated alternative splicing profiles of UDP-glucuronosyltransferase (UGT) genes and identified over 130 different alternatively spliced UGT transcripts. Although UGT genes are highly clustered, the formation of chimeric transcripts by intergenic splicing between two or more UGT genes has not yet been reported. This study identified 12 chimeric transcripts (chimeras A-L) containing exons from two or three genes of the four neighboring UGT genes (UGT2B15, UGT2B29P2, UGT2B17, and UGT2B29P1) in human liver and prostate cancer cells. These chimeras typically contain the first five exons of UGT2B15 or UGT2B17 (exons 1-5) spliced to a terminal exon (exon 6) from a downstream UGT gene. Hence they encode truncated UGTs with novel C-terminal peptides. Functional assays of representative chimeric UGT proteins (termed chimeric UGT2B15 and chimeric UGT2B17) showed that they are inactive and can repress the activity of wild-type UGTs. Coimmunoprecipitation assays demonstrated heterotypic interactions between chimeric UGT2B15 (or chimeric UGT2B17) and the UGT2B7 protein. Thus oligomerization of the chimeric UGTs with wild-type UGTs may explain their inhibitory activity. Studies in breast and prostate cancer cells showed that both wild-type and chimeric UGT2B15 and UGT2B17 transcripts are regulated in a similar way at the transcriptional level by sex hormones through their canonical promoters but are differentially regulated at the post-transcriptional level by micro-RNA 376c via their unique 3'-untranslated regions. In conclusion, the formation of chimeric transcripts by intergenic splicing among UGT genes represents a novel mechanism contributing to the diversity of the human UGT transcriptome and proteome. The differential post-transcriptional regulation of wild-type and variant transcripts by micro-RNAs may contribute to their deregulated expression in cancer.


Assuntos
DNA Intergênico/genética , Variação Genética/fisiologia , Glucuronídeos/genética , Glucuronosiltransferase/genética , Antígenos de Histocompatibilidade Menor/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Células Cultivadas , DNA Intergênico/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Células MCF-7 , Antígenos de Histocompatibilidade Menor/metabolismo , Splicing de RNA/fisiologia
20.
J Pharmacol Exp Ther ; 365(1): 48-59, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367276

RESUMO

UGT2B15 is an important androgen-metabolizing UDP-glucuronosyltransferase (UGT) and the mechanisms controlling its expression are of considerable interest. Recent studies showed that miR-376c regulates UGT2B15 in prostate cancer cells via a canonical target site in the 3' untranslated region (3'UTR). The UGT2B15 3'UTR also contains a canonical miR-331-5p target site; previous work indicated that deleting this site reduced, but did not abolish, the ability of miR-331-5p to repress a luciferase reporter carrying the UGT2B15 3'UTR We report here the discovery and characterization of a second, noncanonical miR-331-5p target site in the UGT2B15 3'UTR miR-331-5p-mediated repression of a UGT2B15 3'UTR-reporter was partly inhibited by mutating either of the two miR-331-5p target sites separately, but completely abolished by mutating the two sites simultaneously, indicating that the two sites act cooperatively. miR-331-5p mimics significantly reduced both UGT2B15 mRNA levels and glucuronidation activity in prostate cancer cells, confirming that the native transcript is a miR-331-5p target. Transfection of either miR-331-5p or miR-376c mimics repressed the activity of the UGT2B15 3'UTR-reporter; however, cotransfection of both microRNAs (miRNAs) further reduced activity, indicating cooperative regulation by these two miRNAs. A significant negative correlation between miR-331 and UGT2B15 mRNA levels was observed in a tissue RNA panel, and analysis of The Cancer Genome Atlas (TCGA) hepatocellular carcinoma data set provided further evidence that miR-331 may play an important role in regulation of UGT2B15 in vivo. There was no significant correlation between miR-331 and UGT2B15 mRNA levels in the TCGA prostate adenocarcinoma cohort, which may reflect the complexity of androgen-mediated regulation in determining UGT2B15 levels in prostate cancer. Finally, we show that miR-331-5p does not regulate UGT2B17, providing the first evidence for a post-transcriptional mechanism that differentially regulates these two important androgen-metabolizing UGTs.


Assuntos
Glucuronosiltransferase/genética , MicroRNAs/genética , Neoplasias da Próstata/patologia , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA