RESUMO
In Saccharomyces cerevisiae, the transcriptional repressor Opi1 regulates the expression of genes involved in phospholipid synthesis responding to the abundance of the phospholipid precursor phosphatidic acid at the endoplasmic reticulum. We report here the identification of the conserved leucine zipper (LZ) domain of Opi1 as a hot spot for gain of function mutations and the characterization of the strongest variant identified, Opi1N150D. LZ modeling posits asparagine 150 embedded on the hydrophobic surface of the zipper and specifying dynamic parallel homodimerization by allowing electrostatic bonding across the hydrophobic dimerization interface. Opi1 variants carrying any of the other three ionic residues at amino acid 150 were also repressing. Genetic analyses showed that Opi1N150D variant is dominant, and its phenotype is attenuated when loss of function mutations identified in the other two conserved domains are present in cis. We build on the notion that membrane binding facilitates LZ dimerization to antagonize an intramolecular interaction of the zipper necessary for repression. Dissecting Opi1 protein in three polypeptides containing each conserved region, we performed in vitro analyses to explore interdomain interactions. An Opi11-190 probe interacted with Opi1291-404, the C terminus that bears the activator interacting domain (AID). LZ or AID loss of function mutations attenuated the interaction of the probes but was unaffected by the N150D mutation. We propose a model for Opi1 signal transduction whereby synergy between membrane-binding events and LZ dimerization antagonizes intramolecular LZ-AID interaction and transcriptional repression.
Assuntos
Zíper de Leucina , Fosfolipídeos , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fosfolipídeos/biossíntese , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Multimerização ProteicaRESUMO
The CHKB gene encodes choline kinase ß, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb-/- mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/- mice. Unlike wildtype mice, 60% of the Chkb+/- and all Chkb-/- mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/- and Chkb-/- hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb-/- hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/- and Chkb-/- mice.
Assuntos
Arritmias Cardíacas , Colina Quinase , Insuficiência Cardíaca , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Fator Natriurético Atrial/genética , Colina Quinase/deficiência , Colina Quinase/genética , Colina Quinase/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Camundongos , Fosfatidilcolinas/metabolismoRESUMO
Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.
Assuntos
Modelos Animais de Doenças , Marcadores Genéticos , Doenças Raras/genética , Doenças Raras/terapia , Sistema de Registros/normas , Animais , Bases de Dados Factuais , Genômica , Humanos , Doenças Raras/epidemiologiaRESUMO
OBJECTIVES: To determine COVID-19 vaccine hesitancy rates in inflammatory arthritis patients and identify factors associated with changing vaccine hesitancy over time. METHODS: This investigation was a prospective cohort study of inflammatory arthritis patients from community and public hospital outpatient rheumatology clinics enrolled in the Australian Rheumatology Association Database (ARAD). Two surveys were conducted, one immediately prior to (pre-pandemic) and another approximately 1 year after the start of the pandemic (follow-up). Coronavirus disease 2019 (COVID-19) vaccine hesitancy was measured at follow-up, and general vaccine hesitancy was inferred pre-pandemic; these were used to identify factors associated with fixed and changing vaccine beliefs, including sources of information and broader beliefs about medication. RESULTS: Of the 594 participants who completed both surveys, 74 (12%) were COVID-19 vaccine hesitant. This was associated with pre-pandemic beliefs about medications being harmful (P < 0.001) and overused (P = 0.002), with stronger beliefs resulting in vaccine hesitancy persistent over two time points (P = 0.008, P = 0.005). For those not vaccine hesitant pre-pandemic, the development of COVID-19 vaccine hesitancy was associated with a lower likelihood of seeking out vaccine information from health-care professionals (P < 0.001). COVID-19 vaccine hesitancy was not associated with new influenza vaccine hesitancy (P = 0.138). CONCLUSION: In this study of vaccine beliefs before and during the COVID-19 pandemic, factors associated with COVID-19 vaccine hesitancy in inflammatory arthritis patients varied, depending on vaccine attitudes immediately prior to the start of the pandemic. Fixed beliefs reflected broader views about medications, while fluid beliefs were highly influenced by whether they sought out information from health-care professionals, including rheumatologists.
Assuntos
Artrite , COVID-19 , Humanos , Vacinas contra COVID-19/uso terapêutico , Pandemias , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Austrália/epidemiologia , Artrite/tratamento farmacológico , VacinaçãoRESUMO
The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.
Assuntos
Colina Quinase , Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Alelos , Colina Quinase/genética , Epilepsia/genética , Humanos , Microcefalia/complicações , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genéticaRESUMO
The detection of adverse drug reactions (ADRs) is critical to our understanding of the safety and risk-benefit profile of medications. With an incidence that has not changed over the last 30 years, ADRs are a significant source of patient morbidity, responsible for 5%-10% of acute care hospital admissions worldwide. Spontaneous reporting of ADRs has long been the standard method of reporting, however this approach is known to have high rates of under-reporting, a problem that limits pharmacovigilance efforts. Automated ADR reporting presents an alternative pathway to increase reporting rates, although this may be limited by over-reporting of other drug-related adverse events. We developed a deep learning natural language processing algorithm to identify ADRs in discharge summaries at a single academic hospital centre. Our model was developed in two stages: first, a pre-trained model (DeBERTa) was further pre-trained on 1.1 million unlabelled clinical documents; secondly, this model was fine-tuned to detect ADR mentions in a corpus of 861 annotated discharge summaries. This model was compared to a version without the pre-training step, and a previously published RoBERTa model pretrained on MIMIC III, which has demonstrated strong performance on other pharmacovigilance tasks. To ensure that our algorithm could differentiate ADRs from other drug-related adverse events, the annotated corpus was enriched for both validated ADR reports and confounding drug-related adverse events using. The final model demonstrated good performance with a ROC-AUC of 0.955 (95% CI 0.933 - 0.978) for the task of identifying discharge summaries containing ADR mentions, significantly outperforming the two comparator models.
Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Processamento de Linguagem Natural , Sistemas de Notificação de Reações Adversas a Medicamentos , Algoritmos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , FarmacovigilânciaRESUMO
The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.
Assuntos
Citidina Difosfato Colina/metabolismo , Cistina Difosfato/análogos & derivados , Etanolaminas/metabolismo , Animais , Colina Quinase/química , Colina Quinase/genética , Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/genética , Cistina Difosfato/metabolismo , Estudos de Associação Genética , Humanos , Distrofias Musculares/congênito , Distrofias Musculares/genética , Distrofias Musculares/patologia , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
PURPOSE: To evaluate the sensitivity and specificity of PET/CT findings in PMR and generate a diagnostic algorithm utilizing a minimum number of musculoskeletal sites. METHODS: Steroid-naïve patients with newly diagnosed PMR (2012 EULAR/ACR classification criteria) were prospectively recruited to undergo whole-body 18F-FDG PET/CT. Each PMR case was age- and sex-matched to four PET/CT controls. Control scan indication, diagnosis and medical history were extracted from the clinical record. Qualitative and semi-quantitative scoring (maximum standardized uptake value [SUVmax]) of abnormal 18F-FDG uptake at 21 musculoskeletal sites was undertaken for cases and controls. Results informed the development of a novel PET/CT diagnostic algorithm using a classification and regression trees (CART) method. RESULTS: Thirty-three cases met the inclusion criteria and were matched to 132 controls. Mean age was 68.6 ± 7.4 years for cases compared with 68.2 ± 7.3 for controls, and 54.5% were male. Median CRP was 49 mg/L (32-65) and ESR 41.5 mm/h (24.6-64.4) in the PMR group. The predominant control indication for PET/CT was malignancy (63.6%). Individual musculoskeletal sites proved insufficient for diagnostic purposes. A novel algorithm comprising 18F-FDG uptake ≥ 2 adjacent to the ischial tuberosities in combination with either abnormalities at the peri-articular shoulder or interspinous bursa achieved a sensitivity of 90.9% and specificity of 92.4% for diagnosing PMR. CONCLUSIONS: The presence of abnormal 18F-FDG uptake adjacent to the ischial tuberosities together with findings at the peri-articular shoulder or interspinous bursa on whole-body PET/CT is highly sensitive and specific for a diagnosis of PMR. TRIAL REGISTRATION: Clinical Trial Registration: Australian New Zealand Clinical Trials Registry, http://www.anzctr.org.au , ACTRN1261400696695.
Assuntos
Arterite de Células Gigantes , Polimialgia Reumática , Idoso , Austrália , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Polimialgia Reumática/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Sensibilidade e EspecificidadeRESUMO
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Mutação Puntual/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Embrião não Mamífero , Microinjeções , Mutagênese Sítio-Dirigida/métodos , Peixe-Zebra/embriologiaRESUMO
BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS: A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS: Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION: We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.
Assuntos
Receptores Frizzled/fisiologia , Retina/patologia , Vasos Retinianos/patologia , Remodelação Vascular/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Modelos Animais de Doenças , Embrião não Mamífero , Vitreorretinopatias Exsudativas Familiares/diagnóstico , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/patologia , Estudos de Viabilidade , Receptores Frizzled/genética , Humanos , Neovascularização Patológica/embriologia , Neovascularização Patológica/genética , Neovascularização Patológica/fisiopatologia , Retina/diagnóstico por imagem , Retina/embriologia , Retina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Vasos Retinianos/embriologia , Vasos Retinianos/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.
Assuntos
Anemia Sideroblástica/genética , Ácido Fólico/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glicina/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Animais , Ácido Fólico/administração & dosagem , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Glicina/administração & dosagem , Heme/biossíntese , Hemoglobinas/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mutação , Saccharomyces cerevisiae , Peixe-ZebraRESUMO
Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function.
Assuntos
Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Mutação/genética , Fosfolipídeos/biossíntese , Transdução de Sinais/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Espectrometria de Massas , Omã , Fosfolipídeos/sangue , Saccharomyces cerevisiae , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologiaAssuntos
Espondiloartrite Axial , Aprendizado Profundo , Sacroileíte , Espondilartrite , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Articulação Sacroilíaca/diagnóstico por imagem , Articulação Sacroilíaca/patologia , Sacroileíte/diagnóstico por imagem , Sacroileíte/patologia , Espondilartrite/complicações , Espondilartrite/diagnóstico por imagem , Espondilartrite/patologiaAssuntos
Termos de Consentimento , Consentimento Livre e Esclarecido , Humanos , Biblioteca Genômica , Canadá , Genômica , PolíticasRESUMO
Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC), hereditary diffuse gastric cancer (HDGC). The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L) in mitogen-activated protein kinase kinase kinase 6 (MAP3K6). Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G). A somatic second-hit variant (p.H506Y) was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.
Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , MAP Quinase Quinase Quinases/genética , Neoplasias Gástricas/genética , Antígenos CD , Caderinas/genética , Análise Mutacional de DNA , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/patologiaRESUMO
Membrane contact sites (MCSs) are regions of close apposition between different organelles that contribute to the functional integration of compartmentalized cellular processes. In recent years, we have gained insight into the molecular architecture of several contact sites, as well as into the regulatory mechanisms that underlie their roles in cell physiology. We provide an overview of two selected topics where lipid metabolism intersects with MCSs and organelle dynamics. First, the role of phosphatidic acid phosphatase, Pah1, the yeast homolog of metazoan lipin, toward the synthesis of triacylglycerol is outlined in connection with the seipin complex, Fld1/Ldb16, and lipid droplet formation. Second, we recapitulate the different contact sites connecting mitochondria and the endomembrane system and emphasize their contribution to phospholipid synthesis and their coordinated regulation. A comprehensive view is emerging where the multiplicity of contact sites connecting different cellular compartments together with lipid transfer proteins functioning at more than one MCS allow for functional redundancy and cross-regulation.
Assuntos
Membrana Celular/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos de Membrana/biossíntese , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Lipídeos de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The Saccharomyces cerevisiae TAZ1 gene is an orthologue of human TAZ; both encode the protein tafazzin. Tafazzin is a transacylase that transfers acyl chains with unsaturated fatty acids from phospholipids to monolysocardiolipin to generate cardiolipin with unsaturated fatty acids. Mutations in human TAZ cause Barth syndrome, a fatal childhood cardiomyopathy biochemically characterized by reduced cardiolipin mass and increased monolysocardiolipin levels. To uncover cellular processes that require tafazzin to maintain cell health, we performed a synthetic genetic array screen using taz1Δ yeast cells to identify genes whose deletion aggravated its fitness. The synthetic genetic array screen uncovered several mitochondrial cellular processes that require tafazzin. Focusing on the i-AAA protease Yme1, a mitochondrial quality control protein that degrades misfolded proteins, we determined that in cells lacking both Yme1 and Taz1 function, there were substantive mitochondrial ultrastructural defects, ineffective superoxide scavenging, and a severe defect in mitophagy. We identify an important role for the mitochondrial protease Yme1 in the ability of cells that lack tafazzin function to maintain mitochondrial structural integrity and mitochondrial quality control and to undergo mitophagy.