Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 240(1): 138-156, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37475146

RESUMO

Vegetative transpiration (E) and photosynthetic carbon assimilation (A) are known to be seasonally dynamic, with changes in their ratio determining the marginal water use efficiency (WUE). Despite an understanding that stomata play a mechanistic role in regulating WUE, it is still unclear how stomatal and nonstomatal processes influence change in WUE over the course of the growing season. As a result, limited understanding of the primary physiological drivers of seasonal dynamics of canopy WUE remains one of the largest uncertainties in earth system model projections of carbon and water exchange in temperate deciduous forest ecosystems. We investigated seasonal patterns in leaf-level physiological, hydraulic, and anatomical properties, including the seasonal progress of the stomatal slope parameter (g1 ; inversely proportional to WUE) and the maximum carboxylation rate (Vcmax ). Vcmax and g1 were seasonally variable; however, their patterns were not temporally synchronized. g1 generally showed an increasing trend until late in the season, while Vcmax peaked during the midsummer months. Seasonal progression of Vcmax was primarily driven by changes in leaf structural, and anatomical characteristics, while seasonal changes in g1 were most strongly related to changes in Vcmax and leaf hydraulics. Using a seasonally variable Vcmax and g1 to parameterize a canopy-scale gas exchange model increased seasonally aggregated A and E by 3% and 16%, respectively.


Assuntos
Ecossistema , Água , Estações do Ano , Árvores/fisiologia , Florestas , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Carbono , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA