RESUMO
Equal partitioning of the multi-copy yeast 2-micron plasmid requires association of plasmid proteins Rep1 and Rep2 with tandem repeats at the plasmid STB locus. To identify sequence elements required for these associations we generated synthetic versions of a 63-bp section of STB, encompassing one repeat. A single copy of this sequence was sufficient for Rep protein association in vivo, while two directly arrayed copies provided partitioning function to a plasmid lacking all other 2-micron sequences. Partitioning efficiency increased with increasing repeat number, reaching that conferred by the native STB repeat array. By altering sequences in synthetic repeats, we identified the TGCA component of a TGCATTTTT motif as critical for Rep protein recognition, with a second TGCA sequence in each repeat also contributing to association. Mutation of TGCATTTTT to TGTATTTT, as found in variant 2-micron STB repeats, also allowed Rep protein association, while mutation to TGCATTAAT impaired inheritance without abolishing Rep protein recognition, suggesting an alternate role for the T-tract. Our identification of sequence motifs required for Rep protein recognition provides the basis for understanding higher-order Rep protein arrangements at STB that enable the yeast 2-micron plasmid to be efficiently partitioned during host cell division.
Assuntos
DNA Fúngico/química , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Mutação , Sequências Repetitivas de Ácido NucleicoRESUMO
The yeast 2-micron plasmid is an almost perfect selfish DNA. The entire coding capacity of the plasmid is dedicated to ensuring its own inheritance, with no benefit to its host. Despite high copy number, the plasmid confers no phenotype. It manages this feat by possessing mechanisms for plasmid copy-number control and for partitioning. The former increases plasmid numbers when they fall, but is repressed at high copy number, while the latter ensures 2-micron copies are equally partitioned during host cell division. Although the plasmid amplification mechanism is well established, the partitioning system and the means by which the 2-micron plasmid partitioning proteins, Rep1 and Rep2, regulate plasmid copy number remain incompletely understood. This review focuses on recent efforts to determine the nature of Rep protein complexes formed at the plasmid stability locus (STB) and at plasmid gene promoters, the identity of DNA sequence elements required for Rep protein association, and the mechanism by which the Rep proteins manage their dual roles of plasmid partitioning and plasmid gene repression.
Assuntos
Sequência de Bases/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Divisão Celular/genética , Segregação de Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genéticaRESUMO
The yeast 2-µm plasmid is a remarkable genetic parasite, managing efficient maintenance at high-copy number with minimal impact on the host. Equal partitioning of the plasmid upon host cell division requires plasmid proteins Rep1 and Rep2 and the plasmid STB locus. The Rep proteins and the plasmid-encoded Raf protein also regulate plasmid gene transcription. In this study, protein interaction assays, sequence analyses and mutational approaches were used to identify domains and residues in Rep2 and Raf required for association with Rep1 and Rep2 and to delineate the Rep2 DNA-binding domain. Rep2 and Raf displayed similarities in interactions with Rep1 and Rep2, in having Rep1 promote their STB association in vivo, and in stabilizing Rep protein levels. Rep2 mutants impaired for self-association were competent for transcriptional repression while those deficient for Rep1 association were not. Surprisingly, Rep2 mutants impaired for either Rep1 interaction or self-association were able to maintain efficient plasmid inheritance provided Raf was present and competent for Rep protein interaction. Our findings provide insight into the Rep protein complexes required for partitioning and transcriptional repression, and suggest that in addition to its transcriptional function, Raf stabilization of Rep partitioning proteins contributes to the remarkable persistence of the 2-µm plasmid.
Assuntos
Plasmídeos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Quinases raf/metabolismo , Quinases raf/fisiologia , Divisão Celular , Padrões de Herança , Organismos Geneticamente Modificados , Ligação Proteica , Estabilidade ProteicaRESUMO
In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.
Assuntos
Proteínas de Saccharomyces cerevisiae , Sirtuínas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origem de Replicação , Acetilação , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Histona Desacetilases/metabolismoRESUMO
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome-like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.
Assuntos
Micrognatismo , Saccharomyces cerevisiae , Animais , Proteínas Cromossômicas não Histona , Microtia Congênita , Replicação do DNA/genética , Transtornos do Crescimento , Humanos , Camundongos , Micrognatismo/genética , Proteínas de Manutenção de Minicromossomo/genética , Patela/anormalidadesRESUMO
The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.