Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hematol ; 95(11): 1296-1303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697348

RESUMO

Stroma-leukemia interactions mediated by CXCR4, CD44, VLA4, and their respective ligands contribute to therapy resistance in FLT3-ITD-mutated acute myelogenous leukemia (AML). We conducted a phase 1 study with the combination of sorafenib (a FLT3-ITD inhibitor), plerixafor (a SDF-1/CXCR4 inhibitor), and G-CSF (that cleaves SDF-1, CD44, and VLA4). Twenty-eight patients with relapsed/refractory FLT3-ITD-mutated AML were enrolled from December 2010 to December 2013 at three dose levels of sorafenib (400, 600, and 800 mg twice daily) and G-CSF and plerixafor were administered every other day for seven doses starting on day one. Sorafenib 800 mg twice daily was selected for the expansion phase. While no dose-limiting toxicities (DLT) were encountered in the four-week DLT window, hand-foot syndrome and rash were seen beyond the DLT window, which required dose reductions in most patients. The response rate was 36% (complete response (CR) = 4, complete remission with incomplete platelet recovery (CRp) = 4, complete remission with incomplete hematologic recovery (CRi) = 1, and partial response (PR) = 1) for the intention to treat population. Treatment resulted in 58.4 and 47 mean fold mobilization of blasts and CD34 /38- stem/progenitor cells, respectively, to the circulation. Expression of the adhesion molecules CXCR4, CD44, and VLA4 on circulating leukemia cells correlated negatively with the mobilization of CD34+/38-, CD34+/38-/123+ "progenitor" cells (all P ≤ .002). Mass cytometry analysis of sequential samples from two patients demonstrated resistance emerging early on from sub-clones with persistent Akt and/or ERK signaling. In conclusion, the strategy of combined inhibition of FLT3 kinase and stromal adhesive interactions has promising activity in relapsed/refractory, FLT3-ITD-mutated AML, which warrants further evaluation in the front-line setting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Leucemia Mieloide Aguda , Mutação , Tirosina Quinase 3 Semelhante a fms , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzilaminas , Ciclamos , Intervalo Livre de Doença , Feminino , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/efeitos adversos , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Sorafenibe/administração & dosagem , Sorafenibe/efeitos adversos , Taxa de Sobrevida , Tirosina Quinase 3 Semelhante a fms/sangue , Tirosina Quinase 3 Semelhante a fms/genética
2.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 959-969, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655803

RESUMO

In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways. RPPA revealed that LGALS3 protein was positively correlated with expression of thirteen proteins including MYC, phosphorylated beta-Catenin (p-CTNNB1), and AKT2 and negatively correlated with expression of six proteins including integrin beta 3 (ITGB3). String analysis revealed that proteins positively correlated with LGALS3 showed strong interconnectivity. Consistent with the RPPA results, LGALS3 suppression by shRNA in MSC resulted in decreased MYC and AKT expression while ITGB3 was induced. In co-culture, the ability of AML cell to adhere to MSC LGALS3 shRNA transductants was reduced compared to AML cell adhesion to MSC control shRNA transductants. Finally, use of novel specific LGALS3 inhibitor CBP.001 in co-culture of AML cells with MSC reduced viable leukemia cell populations with induced apoptosis and augmented the chemotherapeutic effect of AraC. In summary, the current study demonstrates that MSC-derived LGALS3 may be critical for important biological pathways for MSC homeostasis and for regulating AML cell localization and survival in the leukemia microenvironmental niche.


Assuntos
Galectina 3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima , Proteínas Sanguíneas , Técnicas de Cocultura , Galectinas , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Fosforilação , Mapas de Interação de Proteínas , Proteômica , Células THP-1 , Células Tumorais Cultivadas , Microambiente Tumoral
3.
Radiographics ; 39(7): 2040-2052, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603734

RESUMO

The high prevalence of thyroid nodules combined with the generally indolent growth of thyroid cancer present a challenge for optimal patient care. Risk classification models based on US features have been created by multiple professional societies, including the American College of Radiology (ACR), which published the Thyroid Imaging Reporting and Data System (TI-RADS) in 2017. ACR TI-RADS uses a standardized lexicon for assessment of thyroid nodules to generate a numeric scoring of features, designate categories of relative probability of benignity or malignancy, and provide management recommendations, with the aim of reducing unnecessary biopsies and excessive surveillance. Adopting ACR TI-RADS may require practice-level changes involving image acquisition and workflow, interpretation, and reporting. Significant resources should be devoted to educating sonographers and radiologists to accurately recognize features that contribute to the scoring of a nodule. Following a system that uses approved terminology generates reproducible and relevant reports while providing clarity of language and preventing misinterpretation. Comprehensive documentation facilitates quality improvement efforts. It also creates opportunities for outcome data and other performance metrics to be integrated with research. The authors review ACR TI-RADS, describe challenges and potential solutions related to its implementation based on their experiences, and highlight possible future directions in its evolution. ©RSNA, 2019 See discussion on this article by Hoang.


Assuntos
Radiologia , Projetos de Pesquisa , Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia , Biópsia por Agulha Fina , Gerenciamento Clínico , Técnicas de Imagem por Elasticidade , Previsões , Humanos , Uso Excessivo dos Serviços de Saúde , Prevalência , Utilização de Procedimentos e Técnicas , Melhoria de Qualidade , Radiologia/educação , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Medição de Risco , Sociedades Médicas , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/classificação , Nódulo da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/patologia , Ultrassonografia/métodos , Ultrassonografia/normas , Procedimentos Desnecessários , Fluxo de Trabalho
4.
Blood ; 128(9): 1260-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27268264

RESUMO

Autophagy is a cellular adaptive mechanism to stress, including that induced by chemotherapeutic agents. Reverse phase protein array suggested that high expression of the essential autophagy-related protein, Atg7, was associated with shorter remission in newly diagnosed acute myeloid leukemia (AML) patient samples, indicating a role in chemoresistance. Knockdown of Atg7 in AML cells using short hairpin RNA markedly increased apoptosis and DNA damage following treatment with cytarabine and idarubicin. Interestingly, coculture of AML cells with stromal cells increased autophagy and chemoresistance in the AML cells exposed to chemotherapeutic agents, and this was reversed following Atg7 knockdown. This effect was further enhanced by concomitant knockdown of Atg7 in both AML and stromal cells. These findings strongly suggest that Atg7, and likely microenvironment autophagy in general, plays an important role in AML chemoresistance. Mechanistic studies revealed that Atg7 knockdown induced a proapoptotic phenotype in AML cells, which was manifested by an increased NOXA expression at the transcriptional level. Finally, in a mouse model of human leukemia, Atg7 knockdown extended overall survival after chemotherapy. Thus, the inhibition of Atg7 appears to be a valid strategy to enhance chemosensitivity, and it could indeed improve outcomes in AML therapy.


Assuntos
Proteína 7 Relacionada à Autofagia , Autofagia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Microambiente Tumoral , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Haematologica ; 103(5): 810-821, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545342

RESUMO

Mesenchymal stromal cells (MSC) support acute myeloid leukemia (AML) cell survival in the bone marrow (BM) microenvironment. Protein expression profiles of AML-derived MSC are unknown. Reverse phase protein array analysis was performed to compare expression of 151 proteins from AML-MSC (n=106) with MSC from healthy donors (n=71). Protein expression differed significantly between the two groups with 19 proteins over-expressed in leukemia stromal cells and 9 over-expressed in normal stromal cells. Unbiased hierarchical clustering analysis of the samples using these 28 proteins revealed three protein constellations whose variation in expression defined four MSC protein expression signatures: Class 1, Class 2, Class 3, and Class 4. These cell populations appear to have clinical relevance. Specifically, patients with Class 3 cells have longer survival and remission duration compared to other groups. Comparison of leukemia MSC at first diagnosis with those obtained at salvage (i.e. relapse/refractory) showed differential expression of 9 proteins reflecting a shift toward osteogenic differentiation. Leukemia MSC are more senescent compared to their normal counterparts, possibly due to the overexpressed p53/p21 axis as confirmed by high ß-galactosidase staining. In addition, overexpression of BCL-XL in leukemia MSC might give survival advantage under conditions of senescence or stress and overexpressed galectin-3 exerts profound immunosuppression. Together, our findings suggest that the identification of specific populations of MSC in AML patients may be an important determinant of therapeutic response.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/mortalidade , Células-Tronco Mesenquimais/metabolismo , Recidiva Local de Neoplasia/mortalidade , Análise Serial de Proteínas , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Blood ; 126(2): 222-32, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26031918

RESUMO

Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibited stromal cell-derived factor 1 (SDF-1)α-induced chemotaxis and prosurvival signals of AML cells at nanomolar concentrations more effectively than the small-molecule CXCR4 antagonist AMD3100. In vitro, LY2510924 chiefly inhibited the proliferation of AML cells with little induction of cell death and reduced protection against chemotherapy by stromal cells. In mice with established AML, LY2510924 caused initial mobilization of leukemic cells into the circulation followed by reduction in total tumor burden. LY2510924 had antileukemia effects as monotherapy as well as in combination with chemotherapy. Gene expression profiling of AML cells isolated from LY2510924-treated mice demonstrated changes consistent with loss of SDF-1α/CXCR4 signaling and suggested reduced proliferation and induction of differentiation, which was proved by showing the attenuation of multiple prosurvival pathways such as PI3K/AKT, MAPK, and ß-catenin and myeloid differentiation in vivo. Effective disruption of the SDF-1α/CXCR4 axis by LY2510924 may translate into effective antileukemia therapy in future clinical applications.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Receptores CXCR4/antagonistas & inibidores , Células Tumorais Cultivadas , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cytometry A ; 87(4): 346-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25598437

RESUMO

Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may provide a rationale for designing therapeutics targeting LSC-enriched cell populations.


Assuntos
Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/citologia , Transdução de Sinais/genética , Tirosina Quinase 3 Semelhante a fms/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Citocinas/metabolismo , Humanos , Imidazóis/farmacologia , Espectrometria de Massas/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Coloração e Rotulagem , Fator de Células-Tronco/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Cancer Cell ; 10(5): 375-88, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17097560

RESUMO

BCL-2 proteins are critical for cell survival and are overexpressed in many tumors. ABT-737 is a small-molecule BH3 mimetic that exhibits single-agent activity against lymphoma and small-cell lung cancer in preclinical studies. We here report that ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells. ABT-737 induced the disruption of the BCL-2/BAX complex and BAK-dependent but BIM-independent activation of the intrinsic apoptotic pathway. In cells with phosphorylated BCL-2 or increased MCL-1, ABT-737 was inactive. Inhibition of BCL-2 phosphorylation and reduction of MCL-1 expression restored sensitivity to ABT-737. These data suggest that ABT-737 could be a highly effective antileukemia agent when the mechanisms of resistance identified here are considered.


Assuntos
Apoptose/fisiologia , Compostos de Bifenilo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Leucemia Mieloide Aguda , Nitrofenóis , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas , Animais , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/uso terapêutico , Linhagem Celular , Dimerização , Células-Tronco Hematopoéticas/fisiologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/metabolismo , Nitrofenóis/metabolismo , Nitrofenóis/uso terapêutico , Piperazinas/metabolismo , Piperazinas/uso terapêutico , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Blood ; 118(16): 4431-9, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21868571

RESUMO

Fms-like tyrosine kinase-3 (FLT3) inhibitors have been used to overcome the dismal prognosis of acute myeloid leukemia (AML) with FLT3 mutations. Clinical results with FLT3 inhibitor monotherapy have shown that bone marrow responses are commonly less pronounced than peripheral blood responses. We investigated the role of p53 in bone marrow stromal cells in stromal cell-mediated resistance to FLT3 inhibition in FLT3 mutant AML. While the FLT3 inhibitor FI-700 induced apoptosis in FLT3 mutant AML cells, apoptosis induction was diminished under stromal coculture conditions. Protection appeared to be mediated, in part, by CXCL12 (SDF-1)/CXCR4 signaling. The protective effect of stromal cells was significantly reduced by pre-exposure to the HDM2 inhibitor Nutlin-3a. p53 activation by Nutlin-3a was not cytotoxic to stromal cells, but reduced CXCL12 mRNA levels and secretion of CXCL12 partially through p53-mediated HIF-1α down-regulation. Results show that p53 activation in stroma cells blunts stroma cell-mediated resistance to FLT3 inhibition, in part through down-regulation of CXCL12. This is the first report of Nutlin effect on the bone marrow environment. We suggest that combinations of HDM2 antagonists and FLT3 inhibitors may be effective in clinical trials targeting mutant FLT3 leukemias.


Assuntos
Quimiocina CXCL12/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Adulto , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imidazóis/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mutação , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Mol Cancer Res ; 21(6): 548-563, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787422

RESUMO

Despite effective new therapies, adaptive resistance remains the main obstacle in acute myelogenous leukemia (AML) therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared with normal hematopoietic cells. Exposure to chemotherapy and targeted agents upregulate ULK1, hence we hypothesize that developing ULK1 inhibitors may present the unique opportunity for clinical translation of autophagy inhibition. Accordingly, we demonstrate that ULK1 inhibition, by genetic and pharmacologic means, suppresses treatment-induced autophagy, overcomes adaptive drug-resistance, and synergizes with chemotherapy and emerging antileukemia agents like venetoclax (ABT-199). The study next aims at exploring the underlying mechanisms. Mechanistically, ULK1 inhibition downregulates MCL1 antiapoptotic gene, impairs mitochondrial function and downregulates components of the CD44-xCT system, resulting in impaired reactive oxygen species (ROS) mitigation, DNA damage, and apoptosis. For further validation, several mouse models of AML were generated. In these mouse models, ULK1 deficiency impaired leukemic cell homing and engraftment, delayed disease progression, and improved survival. Therefore, in the study, we validated our hypothesis and identified ULK1 as an important mediator of adaptive resistance to therapy and an ideal candidate for combination therapy in AML. Therefore, we propose ULK1 inhibition as a therapeutically relevant treatment option to overcome adaptive drug-resistance in AML. IMPLICATIONS: ULK1 drives a cell-intrinsic adaptive resistance in AML and targeting ULK1-mediated autophagy can synergize with existing and emerging AML therapies to overcome drug-resistance and induce apoptosis.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Antineoplásicos/farmacologia , Autofagia , Resistencia a Medicamentos Antineoplásicos , Apoptose
11.
Cancer Res ; 67(2): 684-94, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17234779

RESUMO

Integrin-linked kinase (ILK) directly interacts with beta integrins and phosphorylates Akt in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. In this study, we examined the functional role of ILK activation in leukemic and bone marrow stromal cells on their direct contact. Coculture of leukemic NB4 cells with bone marrow-derived stromal mesenchymal stem cells (MSC) resulted in robust activation of multiple signaling pathways, including ILK/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers and activators of transcription 3 (STAT3), and Notch1/Hes. Blockade of PI3K or ILK signaling with pharmacologic inhibitors LY294002 or QLT0267 specifically inhibited stroma-induced phosphorylation of Akt and glycogen synthase kinase 3beta, suppressed STAT3 and ERK1/2 activation, and decreased Notch1 and Hes1 expression in leukemic cells. This resulted in induction of apoptosis in both leukemic cell lines and in primary acute myelogenous leukemia samples that was not abrogated by MSC coculture. In turn, leukemic cells growing in direct contact with bone marrow stromal elements induce activation of Akt, ERK1/2, and STAT3 signaling in MSC, accompanied by significant increase in Hes1 and Bcl-2 proteins, which were all suppressed by QLT0267 and LY294002. In summary, our results indicate reciprocal activation of ILK/Akt in both leukemic and bone marrow stromal cells. We propose that ILK/Akt is a proximal signaling pathway critical for survival of leukemic cells within the bone marrow microenvironment. Hence, disruption of these interactions by ILK inhibitors represents a potential novel therapeutic strategy to eradicate leukemia in the bone marrow microenvironment by simultaneous targeting of both leukemic cells and activated bone marrow stromal cells.


Assuntos
Comunicação Celular/fisiologia , Leucemia Promielocítica Aguda/enzimologia , Células-Tronco Mesenquimais/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Sobrevivência Celular/fisiologia , Cromonas/farmacologia , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Humanos , Janus Quinases/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Células-Tronco Mesenquimais/citologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/enzimologia , Fatores de Transcrição HES-1
12.
Cancer Res ; 67(9): 4210-8, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483332

RESUMO

We and others have reported that C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) effectively inhibits the growth of multiple cancer cell types. Our previous studies indicated that prolonged CDDO-Me treatment inactivated extracellular signal-regulated kinase signaling in acute myelogenous leukemia cells. Whether treatment with CDDO-Me has an earlier effect on other proteins that are important for either signal transduction or oncogenesis is unknown. Constitutively activated signal transducer and activator of transcription 3 (STAT3) is frequently found in human breast cancer samples. Constitutively activated STAT3 was shown to up-regulate c-Myc in several types of cancer and has a feedback effect on Src and Akt. To examine the effects of CDDO-Me on STAT3 signaling in breast cancer, we used the murine 4T1 breast tumor model, which is largely resistant to chemotherapy. In vitro, after treatment of 4T1 cells with 500 nmol/L CDDO-Me for 2 h, we found (a) inactivation of STAT3, (b) inactivation of Src and Akt, (c) 4-fold reduction of c-Myc mRNA levels, (d) accumulation of cells in G(2)-M cell cycle phase, (e) abrogation of invasive growth of 4T1 cells, and (f) lack of apoptosis induction. In in vivo studies, CDDO-Me completely eliminated 4T1 breast cancer growth and lung metastases induced by 4T1 cells in mice when treatment started 1 day after tumor implantation and significantly inhibited tumor growth when started after 5 days. In vivo studies also indicated that splenic mature dendritic cells were restored after CDDO-Me treatment. In summary, these data suggest that CDDO-Me may have therapeutic potential in breast cancer therapy, in part, through inactivation of STAT3.


Assuntos
Neoplasias Mamárias Experimentais/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Vetores Genéticos/genética , Lentivirus/genética , Luciferases de Renilla , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Ácido Oleanólico/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia
13.
J Clin Invest ; 129(5): 1878-1894, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30829648

RESUMO

Anti-leukemic effect of BET/BRD4 (BETP) protein inhibition has been largely attributed to transcriptional downregulation of cellular anabolic/anti-apoptotic processes but its effect on bone marrow microenvironment, a sanctuary favoring persistence of leukemia stem/progenitor cells, is unexplored. Sustained degradation of BETP with small-molecule BET proteolysis-targeting chimera (PROTAC), ARV-825, resulted in marked downregulation of surface CXCR4 and CD44, key proteins in leukemia-microenvironment interaction, in AML cells. Abrogation of surface CXCR4 expression impaired SDF-1α directed migration and was mediated through transcriptional down-regulation of PIM1 kinase that in turn phosphorylates CXCR4 and facilitates its surface localization. Down-regulation of CD44/CD44v8-10 impaired cystine uptake, lowered intracellular reduced glutathione and increased oxidative stress. More importantly, BETP degradation markedly decreased CD34+CD38-CD90-CD45RA+ leukemic stem cell population and alone or in combination with Cytarabine, prolonged survival in mouse model of human leukemia including AML-PDX. Gene expression profiling and single cell proteomics confirmed down regulation of the gene signatures associated with 'stemness' in AML and Wnt/ß-catenin, Myc pathways. Hence, BETP degradation by ARV-825 simultaneously targets cell intrinsic signaling, stromal interactions and metabolism in AML.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Azepinas/farmacologia , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL12/metabolismo , Cisteína/química , Perfilação da Expressão Gênica , Glutationa/química , Células HL-60 , Humanos , Receptores de Hialuronatos/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Transplante de Neoplasias , Estresse Oxidativo , Fosforilação , Receptores CXCR4/metabolismo , Células THP-1 , Talidomida/análogos & derivados , Talidomida/farmacologia , Antígenos Thy-1/metabolismo , Células U937
14.
Br J Haematol ; 142(2): 192-201, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18492113

RESUMO

Transforming growth factor beta1 (TGF-beta1) is an essential regulator of cell proliferation, survival and apoptosis, depending on the cellular context. TGF-beta1 is also known to affect cell-to-cell interactions between tumour cells and stromal cells. We investigated the role of TGF-beta1 in the survival of myelo-monocytic leukaemia cell lines co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSC). Treatment with recombinant human (rh)TGF-beta1 inhibited spontaneous and cytarabine-induced apoptosis in U937 cells, most prominently in U937 cells directly attached to MSCs. Conversely, the pro-survival effects of TGF-beta1 were inhibited by LY2109761 or TGF-beta1 neutralizing antibody. rhTGF-beta1 increased pro-survival phosphorylation of Akt, which was inhibited by LY2109761. The combination of rhTGF-beta1 and MSC co-culture induced significant upregulation of C/EBPbeta gene (CEBPB) and protein expression along with increased C/EBPbeta liver-enriched activating protein: liver-enriched inhibitory protein ratio, suggesting the novel role of C/EBPbeta in TGF-beta1-mediated U937 cell survival in the context of stromal cell support. In summary, these results indicate that TGF-beta1 produced by BM stromal cells promotes the survival and chemoresistance of leukaemia cells under the direct cell-to-cell interactions. The blockade of TGF-beta signalling by LY2109761, which effectively inhibited the pro-survival signalling, may enhance the efficacy of chemotherapy against myelo-monocytic leukaemic cells in the BM microenvironment.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucemia/tratamento farmacológico , Pirazóis/farmacologia , Pirróis/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Células Cultivadas/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Leucemia/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células U937/metabolismo
15.
Clin Cancer Res ; 24(10): 2417-2429, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29463558

RESUMO

Purpose: Wnt/ß-catenin signaling is required for leukemic stem cell function. FLT3 mutations are frequently observed in acute myeloid leukemia (AML). Anomalous FLT3 signaling increases ß-catenin nuclear localization and transcriptional activity. FLT3 tyrosine kinase inhibitors (TKI) are used clinically to treat FLT3-mutated AML patients, but with limited efficacy. We investigated the antileukemia activity of combined Wnt/ß-catenin and FLT3 inhibition in FLT3-mutant AML.Experimental Design: Wnt/ß-catenin signaling was inhibited by the ß-catenin/CBP antagonist C-82/PRI-724 or siRNAs, and FLT3 signaling by sorafenib or quizartinib. Treatments on apoptosis, cell growth, and cell signaling were assessed in cell lines, patient samples, and in vivo in immunodeficient mice by flow cytometry, Western blot, RT-PCR, and CyTOF.Results: We found significantly higher ß-catenin expression in cytogenetically unfavorable and relapsed AML patient samples and in the bone marrow-resident leukemic cells compared with circulating blasts. Disrupting Wnt/ß-catenin signaling suppressed AML cell growth, induced apoptosis, abrogated stromal protection, and synergized with TKIs in FLT3-mutated AML cells and stem/progenitor cells in vitro The aforementioned combinatorial treatment improved survival of AML-xenografted mice in two in vivo models and impaired leukemia cell engraftment. Mechanistically, the combined inhibition of Wnt/ß-catenin and FLT3 cooperatively decreased nuclear ß-catenin and the levels of c-Myc and other Wnt/ß-catenin and FLT3 signaling proteins. Importantly, ß-catenin inhibition abrogated the microenvironmental protection afforded the leukemic stem/progenitor cells.Conclusions: Disrupting Wnt/ß-catenin signaling exerts potent activities against AML stem/progenitor cells and synergizes with FLT3 inhibition in FLT3-mutant AML. These findings provide a rationale for clinical development of this strategy for treating FLT3-mutated AML patients. Clin Cancer Res; 24(10); 2417-29. ©2018 AACR.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Via de Sinalização Wnt/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
16.
Cancer Res ; 65(21): 9962-70, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16267021

RESUMO

Conditionally active forms of the Raf proteins (Raf-1, B-Raf, and A-Raf) were created by ligating NH2-terminal truncated activated forms (Delta) to the estrogen receptor (ER) hormone-binding domain resulting in estradiol-regulated constructs (DeltaRaf:ER). These different Raf:ER oncoproteins were introduced into the murine FDC-P1 hematopoietic cell line, and cells that grew in response to the three DeltaRaf:ER oncoproteins were isolated. The ability of FDC-P1, DeltaRaf-1:ER, DeltaA-Raf:ER, and DeltaB-Raf:ER cells to form tumors in severe combined immunodeficient mice was compared. Mice injected with DeltaRaf:ER cells were implanted with beta-estradiol pellets to induce the DeltaRaf:ER oncoprotein. Cytokine-dependent parental cell lines did not form tumors. Implantation of beta-estradiol pellets into mice injected with DeltaRaf:ER cells significantly accelerated tumor onset and tumor size. The recovered DeltaRaf:ER cells displayed induction of extracellular signal-regulated kinase (ERK) in response to beta-estradiol stimulation, indicating that they had retained conditional activation of ERK even when passed through a severe combined immunodeficient mouse. The DeltaRaf:ER cells were very sensitive to induction of apoptosis by the mitogen-activated protein/ERK kinase (MEK) 1 inhibitor CI1040 whereas parental cells were much less affected, demonstrating that the MEK1 may be useful in eliminating Ras/Raf/MEK-transformed cells. Furthermore, the effects of in vivo administration of the MEK1 inhibitor were evaluated and this inhibitor was observed to suppress the tumorigenicity of the injected cells. This DeltaRaf:ER system can serve as a preclinical model to evaluate the effects of signal transduction inhibitors which target the Raf and MEK proteins.


Assuntos
Transformação Celular Neoplásica/patologia , Células-Tronco Hematopoéticas/patologia , Leucemia/patologia , Quinases raf/biossíntese , Animais , Benzamidas/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estradiol/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Leucemia/induzido quimicamente , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Estrogênio/biossíntese , Transplante Heterólogo
17.
Mol Cancer Ther ; 5(2): 317-28, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16505105

RESUMO

HER2 overexpression is one of the most recognizable molecular alterations in breast tumors known to be associated with a poor prognosis. In the study described here, we explored the effect of HER2 overexpression on the sensitivity of breast cancer cells to the growth-inhibitory effects of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), a synthetic triterpenoid, both in vitro and in vivo in a xenograft model of breast cancer. Both cell growth and colony formation in the soft agar assay, a hallmark of the transformation phenotype, were preferentially suppressed in HER2-overexpressing cell lines at low concentrations of CDDO, whereas growth-inhibitory effects at high concentrations did not correlate with the expression level of HER2. CDDO dose-dependently inhibited phosphorylation of HER2 in HER2-overexpressing cells and diminished HER2 kinase activity in vitro. CDDO induced the transactivation of the nuclear receptor peroxisome proliferator-activated receptor-gamma in both vector control and HER2-transfected MCF7 cells. Dose-response studies showed that the growth inhibition seen at lower concentrations of CDDO correlated with induction of the tumor suppressor gene caveolin-1, which is known to inhibit breast cancer cell growth. CDDO also reduced cyclin D1 mRNA and protein expression. In vivo studies with liposomally encapsulated CDDO showed complete abrogation of the growth of the highly tumorigenic MCF7/HER2 cells in a xenograft model of breast cancer. These findings provide the first in vitro and in vivo evidence that CDDO effectively inhibits HER2 tyrosine kinase activity and potently suppresses the growth of HER2-overexpressing breast cancer cells and suggest that CDDO has a therapeutic potential in advanced breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Caveolina 1/metabolismo , Ácido Oleanólico/análogos & derivados , PPAR gama/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Humanos , Camundongos , Camundongos Mutantes , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fosforilação/efeitos dos fármacos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 8(48): 83354-83369, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137349

RESUMO

The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype.

19.
JCI Insight ; 2(13)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679949

RESUMO

Genotypic and phenotypic alterations in the bone marrow (BM) microenvironment, in particular in osteoprogenitor cells, have been shown to support leukemogenesis. However, it is unclear how leukemia cells alter the BM microenvironment to create a hospitable niche. Here, we report that acute myeloid leukemia (AML) cells, but not normal CD34+ or CD33+ cells, induce osteogenic differentiation in mesenchymal stromal cells (MSCs). In addition, AML cells inhibited adipogenic differentiation of MSCs. Mechanistic studies identified that AML-derived BMPs activate Smad1/5 signaling to induce osteogenic differentiation in MSCs. Gene expression array analysis revealed that AML cells induce connective tissue growth factor (CTGF) expression in BM-MSCs irrespective of AML type. Overexpression of CTGF in a transgenic mouse model greatly enhanced leukemia engraftment in vivo. Together, our data suggest that AML cells induce a preosteoblast-rich niche in the BM that in turn enhances AML expansion.

20.
Cancer Res ; 63(18): 5926-39, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14522919

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear hormonal receptor superfamily expressed in a large number of human cancers. Here, we demonstrate that PPARgamma is expressed and transcriptionally active in breast cancer cells independent of their p53, estrogen receptor, or human epidermal growth factor receptor 2 status. 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), a novel synthetic triterpenoid, is a ligand for PPARgamma. We investigated the molecular mechanisms of CDDO on proliferation and apoptosis in breast cancer cells. In all breast cancer cell lines studied, CDDO transactivated PPARgamma, induced dose- and time-dependent cell growth inhibition, cell cycle arrest in G(1)-S and G(2)-M, and apoptosis. We then used differential cDNA array analysis to investigate the molecular changes induced by CDDO. After 16-h exposure of MCF-7 and MDA-MB-435 cells to CDDO, we found genes encoding the following proteins to be up-regulated in both cell lines: p21(Waf1/CIP1); GADD153; CAAT/enhancer binding protein transcription factor family members; and proteins involved in the ubiquitin-proteasome pathway. Among the down-regulated genes, we focused on the genes encoding cyclin D1, proliferating cell nuclear antigen, and the insulin receptor substrate 1. Using Western blot analysis and/or real-time PCR, we confirmed that CDDO regulated the expression of cyclin D1, p21(Waf1/CIP1), and Bcl-2. Cyclin D1 and p21(Waf1/CIP1) were additionally confirmed as important mediators of CDDO growth inhibition in genetically modified breast cancer cell lines. CDDO was able to significantly reduce the growth of MDA-MB-435 tumor cells in immunodeficient mice in vivo. The finding that CDDO can target genes critical for the regulation of cell cycle, apoptosis, and breast carcinogenesis suggests usage of CDDO as novel targeted therapy in breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Fatores de Transcrição/biossíntese , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/biossíntese , Ciclinas/genética , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hospedeiro Imunocomprometido , Camundongos , Camundongos Nus , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA