Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 144(15): 1617-1632, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38958467

RESUMO

ABSTRACT: Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. Although genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations, and copy-neutral loss of heterozygosity were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91%, 43%, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and loss of heterozygosity at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow (BM) blast percentage across groups ranged from 1.5% to 10%, and the median overall survival ranged from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of BM blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and might inform future classification schemas and translational therapeutic research.


Assuntos
Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Mutação , Adulto , Prognóstico , Perda de Heterozigosidade , Variações do Número de Cópias de DNA
2.
Mod Pathol ; 37(4): 100452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369186

RESUMO

The molecular characterization of male breast cancer (MaBC) has received limited attention in research, mostly because of its low incidence rate, accounting for only 0.5% to 1% of all reported cases of breast cancer each year. Managing MaBC presents significant challenges, with most treatment protocols being adapted from those developed for female breast cancer. Utilizing whole-genome sequencing (WGS) and state-of-the-art analyses, the genomic features of 10 MaBC cases (n = 10) were delineated and correlated with clinical and histopathologic characteristics. Using fluorescence in situ hybridization, an additional cohort of 18 patients was interrogated to supplement WGS findings. The genomic landscape of MaBC uncovered significant genetic alterations that could influence diagnosis and treatment. We found common somatic mutations in key driver genes, such as FAT1, GATA3, SMARCA4, and ARID2. Our study also mapped out structural variants that impact cancer-associated genes, such as ARID1A, ESR1, GATA3, NTRK1, and NF1. Using a WGS-based classifier, homologous recombination deficiency (HRD) was identified in 2 cases, both presenting with deleterious variants in BRCA2. Noteworthy was the observation of FGFR1 amplification in 21% of cases. Altogether, we identified at least 1 potential therapeutic target in 8 of the 10 cases, including high tumor mutational burden, FGFR1 amplification, and HRD. Our study is the first WGS characterization of MaBC, which uncovered potentially relevant variants, including structural events in cancer genes, HRD signatures, and germline pathogenic mutations. Our results demonstrate unique genetic markers and potential treatment targets in MaBC, thereby underlining the necessity of tailoring treatment strategies for this understudied patient population. These WGS-based findings add to the growing knowledge of MaBC genomics and highlight the need to expand research on this type of cancer.


Assuntos
Neoplasias da Mama Masculina , Neoplasias da Mama , Humanos , Masculino , Feminino , Neoplasias da Mama Masculina/genética , Neoplasias da Mama Masculina/terapia , Hibridização in Situ Fluorescente , Mutação , Neoplasias da Mama/patologia , Oncogenes , Mutação em Linhagem Germinativa , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
BMC Bioinformatics ; 21(1): 549, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256603

RESUMO

BACKGROUND: The widespread adoption of high throughput technologies has democratized data generation. However, data processing in accordance with best practices remains challenging and the data capital often becomes siloed. This presents an opportunity to consolidate data assets into digital biobanks-ecosystems of readily accessible, structured, and annotated datasets that can be dynamically queried and analysed. RESULTS: We present Isabl, a customizable plug-and-play platform for the processing of multimodal patient-centric data. Isabl's architecture consists of a relational database (Isabl DB), a command line client (Isabl CLI), a RESTful API (Isabl API) and a frontend web application (Isabl Web). Isabl supports automated deployment of user-validated pipelines across the entire data capital. A full audit trail is maintained to secure data provenance, governance and ensuring reproducibility of findings. CONCLUSIONS: As a digital biobank, Isabl supports continuous data utilization and automated meta analyses at scale, and serves as a catalyst for research innovation, new discoveries, and clinical translation.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Factuais , Humanos , Internet , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador
4.
Am J Physiol Lung Cell Mol Physiol ; 309(1): L46-52, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934669

RESUMO

To perform a range of ventilatory and nonventilatory behaviors, the diaphragm muscle (DIAm) must be able to generate sufficient forces throughout the lifespan. We hypothesized that sarcopenia impacts DIAm force generation and thus limits performance of expulsive, higher force, nonventilatory behaviors. Male and female mice (n = 79) at 6 and 24 mo of age (100 vs. 70-75% survival, respectively) were used to examine transdiaphragmatic pressure (Pdi) generation across motor behaviors in vivo and in vitro DIAm specific force. We found a significant effect of age on maximum Pdi (20-41% decline during tracheal occlusion and bilateral phrenic nerve stimulation), maximum DIAm specific force (30% decline), and DIAm fatigue resistance (15% increase). There were no differences between sexes in these age effects on DIAm performance. These results support our hypothesis that sarcopenia primarily impacts higher force, nonventilatory motor behaviors of the DIAm. Such functional limitations may have negative implications in the ability of the DIAm to generate forces needed for airway clearance in old age and thereby contribute to age-related respiratory complications.


Assuntos
Diafragma/fisiologia , Pneumopatias/patologia , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Sarcopenia/fisiopatologia , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração , Fatores Sexuais
5.
Muscle Nerve ; 52(1): 76-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808550

RESUMO

INTRODUCTION: Sarcopenia likely comprises muscle fiber denervation and re-innervation, resulting in clustering of muscle fibers of the same type (classified by myosin heavy chain isoform composition). Development of methodology to quantitatively evaluate clustering of muscle fibers according to fiber type is necessary. METHODS: Fiber type specific immunofluorescence histology was used to quantify fiber clustering in murine diaphragm muscle (n = 15) at ages 6 and 24 months. RESULTS: With age, fiber type clustering is evidenced by fiber type specific changes in distances between fibers, specifically a 14% decrease to the closest fiber for type I and 24% increase for type IIx and/or IIb fibers (P < 0.001). Additionally, a 34% increase to the 3 closest type IIx and/or IIb fibers was found (P < 0.001). CONCLUSIONS: This novel method of analyzing fiber type clustering may be useful in examining pathophysiological conditions of motor unit loss in neuromuscular disorders, myopathies, dystrophies, injuries, or amyotrophic lateral sclerosis.


Assuntos
Diafragma/patologia , Fibras Musculares Esqueléticas/patologia , Sarcopenia/patologia , Fatores Etários , Análise de Variância , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/classificação , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas , Sarcolema/patologia
6.
Am J Surg Pathol ; 48(2): 183-193, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047392

RESUMO

Several reports describing a rare primary liver tumor with histologic features reminiscent of follicular thyroid neoplasms have been published under a variety of descriptive terms including thyroid-like, solid tubulocystic, and cholangioblastic cholangiocarcinoma. Although these tumors are considered to represent histologic variants, they lack classic features of cholangiocarcinoma and have unique characteristics, namely immunoreactivity for inhibin and NIPBL::NACC1 fusions. The purpose of this study is to present clinicopathologic and molecular data for a large series of these tumors to better understand their pathogenesis. We identified 11 hepatic tumors with these features. Immunohistochemical and NACC1 and NIPBL fluorescence in situ hybridization assays were performed on all cases. Four cases had available material for whole-genome sequencing (WGS) analysis. Most patients were adult women (mean age: 42 y) who presented with abdominal pain and large hepatic masses (mean size: 14 cm). Ten patients had no known liver disease. Of the patients with follow-up information, 3/9 (33%) pursued aggressive behavior. All tumors were composed of bland cuboidal cells with follicular and solid/trabecular growth patterns in various combinations, were immunoreactive for inhibin, showed albumin mRNA by in situ hybridization, and harbored the NIPBL::NACC1 fusion by fluorescence in situ hybridization. WGS corroborated the presence of the fusion in all 4 tested cases, high tumor mutational burden in 2 cases, and over 30 structural variants per case in 3 sequenced tumors. The cases lacked mutations typical of conventional intrahepatic cholangiocarcinoma. In this report, we describe the largest series of primary inhibin-positive hepatic neoplasms harboring a NIPBL::NACC1 fusion and the first WGS analysis of these tumors. We propose to name this neoplasm NIPBL:NACC1 fusion hepatic carcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Adulto , Humanos , Feminino , Hibridização in Situ Fluorescente , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Inibinas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética
7.
Blood Adv ; 7(15): 3862-3873, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867579

RESUMO

Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Mutação , Sequenciamento Completo do Genoma , Cariótipo Anormal
8.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169874

RESUMO

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Evolução Clonal , Mutação , Metástase Neoplásica
9.
Leuk Res ; 117: 106857, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35598475

RESUMO

Data concerning the treatment approach and clinical outcomes in younger patients with myelodysplastic syndromes (MDS) are lacking. Furthermore, published results from genomic profiling in the young adult MDS population are few. We identified patients aged 20-50 at diagnosis evaluated for de novo MDS at our institution over a 32-year period. Clinical information and results from sequencing panels were extracted for analysis. 68 eligible patients were found, including 32% with multilineage dysplasia and 29% with excess blasts-2 WHO subtypes. Revised International Prognostic Scoring System for MDS (IPSS-R) categorization had 47% high/very high-risk, and this classification held prognostic significance. The median overall survival was 59 months, and most patients (75%) underwent allogeneic hematopoietic cell transplantation (alloHCT). Thirty-four patients had mutational profiling; the most commonly mutated gene was TP53 and most commonly altered gene category was epigenetic regulators. Younger patients with de novo MDS represented a unique subset with high-risk disease features (adverse cytogenetics, higher R-IPSS) frequently observed along with alterations in TP53 and genes related to epigenetic and transcription pathways.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas , Adulto , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Prognóstico , Fatores de Risco , Adulto Jovem
10.
Clin Cancer Res ; 28(8): 1614-1627, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35078859

RESUMO

PURPOSE: Therapy-related myelodysplastic syndrome and acute leukemias (t-MDS/AL) are a major cause of nonrelapse mortality among pediatric cancer survivors. Although the presence of clonal hematopoiesis (CH) in adult patients at cancer diagnosis has been implicated in t-MDS/AL, there is limited published literature describing t-MDS/AL development in children. EXPERIMENTAL DESIGN: We performed molecular characterization of 199 serial bone marrow samples from 52 patients treated for high-risk neuroblastoma, including 17 with t-MDS/AL (transformation), 14 with transient cytogenetic abnormalities (transient), and 21 without t-MDS/AL or cytogenetic alterations (neuroblastoma-treated control). We also evaluated for CH in a cohort of 657 pediatric patients with solid tumor. RESULTS: We detected at least one disease-defining alteration in all cases at t-MDS/AL diagnosis, most commonly TP53 mutations and KMT2A rearrangements, including involving two novel partner genes (PRDM10 and DDX6). Backtracking studies identified at least one t-MDS/AL-associated mutation in 13 of 17 patients at a median of 15 months before t-MDS/AL diagnosis (range, 1.3-32.4). In comparison, acquired mutations were infrequent in the transient and control groups (4/14 and 1/21, respectively). The relative risk for development of t-MDS/AL in the presence of an oncogenic mutation was 8.8 for transformation patients compared with transient. Unlike CH in adult oncology patients, TP53 mutations were only detectable after initiation of cancer therapy. Last, only 1% of pediatric patients with solid tumor evaluated had CH involving myeloid genes. CONCLUSIONS: These findings demonstrate the clinical relevance of identifying molecular abnormalities in predicting development of t-MDS/AL and should guide the formation of intervention protocols to prevent this complication in high-risk pediatric patients.


Assuntos
Sobreviventes de Câncer , Leucemia Mieloide Aguda , Neuroblastoma , Adulto , Medula Óssea/patologia , Criança , Células Clonais , Humanos , Leucemia Mieloide Aguda/genética , Neuroblastoma/patologia
11.
NEJM Evid ; 1(7): EVIDoa2200008, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-38319256

RESUMO

BACKGROUND: Risk stratification and therapeutic decision-making for myelodysplastic syndromes (MDS) are based on the International Prognostic Scoring System­Revised (IPSS-R), which considers hematologic parameters and cytogenetic abnormalities. Somatic gene mutations are not yet used in the risk stratification of patients with MDS. METHODS: To develop a clinical-molecular prognostic model (IPSS-Molecular [IPSS-M]), pretreatment diagnostic or peridiagnostic samples from 2957 patients with MDS were profiled for mutations in 152 genes. Clinical and molecular variables were evaluated for associations with leukemia-free survival, leukemic transformation, and overall survival. Feature selection was applied to determine the set of independent IPSS-M prognostic variables. The relative weights of the selected variables were estimated using a robust Cox multivariable model adjusted for confounders. The IPSS-M was validated in an external cohort of 754 Japanese patients with MDS. RESULTS: We mapped at least one oncogenic genomic alteration in 94% of patients with MDS. Multivariable analysis identified TP53multihit, FLT3 mutations, and MLLPTD as top genetic predictors of adverse outcomes. Conversely, SF3B1 mutations were associated with favorable outcomes, but this was modulated by patterns of comutation. Using hematologic parameters, cytogenetic abnormalities, and somatic mutations of 31 genes, the IPSS-M resulted in a unique risk score for individual patients. We further derived six IPSS-M risk categories with prognostic differences. Compared with the IPSS-R, the IPSS-M improved prognostic discrimination across all clinical end points and restratified 46% of patients. The IPSS-M was applicable in primary and secondary/therapy-related MDS. To simplify clinical use of the IPSS-M, we developed an open-access Web calculator that accounts for missing values. CONCLUSIONS: Combining genomic profiling with hematologic and cytogenetic parameters, the IPSS-M improves the risk stratification of patients with MDS and represents a valuable tool for clinical decision-making. (Funded by Celgene Corporation through the MDS Foundation, the Josie Robertson Investigators Program, the Edward P. Evans Foundation, the Projects of National Relevance of the Italian Ministry of University and Research, Associazione Italiana per la Ricerca sul Cancro, the Japan Agency for Medical Research and Development, Cancer Research UK, the Austrian Science Fund, the MEXT [Japanese Ministry of Education, Culture, Sports, Science and Technology] Program for Promoting Research on the Supercomputer Fugaku, the Japan Society for the Promotion of Science, the Taiwan Department of Health, and Celgene Corporation through the MDS Foundation.)


Assuntos
Mutação , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/diagnóstico , Prognóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Medição de Risco/métodos , Idoso de 80 Anos ou mais , Adulto , Japão
12.
Clin Cancer Res ; 27(14): 4003-4011, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34103301

RESUMO

PURPOSE: Biomarkers of response and resistance to FLT3 tyrosine kinase inhibitors (TKI) are still emerging, and optimal clinical combinations remain unclear. The purpose of this study is to identify co-occurring mutations that influence clinical response to the novel FLT3 inhibitor pexidartinib (PLX3397). EXPERIMENTAL DESIGN: We performed targeted sequencing of pretreatment blasts from 29 patients with FLT3 internal tandem duplication (ITD) mutations treated on the phase I/II trial of pexidartinib in relapsed/refractory FLT3-ITD+ acute myeloid leukemia (AML). We sequenced 37 samples from 29 patients with available material, including 8 responders and 21 non-responders treated at or above the recommended phase II dose of 3,000 mg. RESULTS: Consistent with other studies, we identified mutations in NRAS, TP53, IDH2, and a variety of epigenetic and transcriptional regulators only in non-responders. Among the most frequently mutated genes in non-responders was Cyclin D3 (CCND3). A total of 3 individual mutations in CCND3 (Q276*, S264R, and T283A) were identified in 2 of 21 non-responders (one patient had both Q276* and S264R). No CCND3 mutations were found in pexidartinib responders. Expression of the Q276* and T283A mutations in FLT3-ITD MV4;11 cells conferred resistance to apoptosis, decreased cell-cycle arrest, and increased proliferation in the presence of pexidartinib and other FLT3 inhibitors. Inhibition of CDK4/6 activity in CCND3 mutant MV4;11 cells restored pexidartinib-induced cell-cycle arrest but not apoptosis. CONCLUSIONS: Mutations in CCND3, a gene not commonly mutated in AML, are a novel cause of clinical primary resistance to FLT3 inhibitors in AML and may have sensitivity to CDK4/6 inhibition.


Assuntos
Aminopiridinas/uso terapêutico , Ciclina D3/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos
13.
Blood Adv ; 4(22): 5735-5744, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33216890

RESUMO

Activation of the P53 pathway through inhibition of MDM2 using nutlins has shown clinical promise in the treatment of solid tumors and hematologic malignancies. There is concern, however, that nutlin therapy might stimulate the emergence or expansion of TP53-mutated subclones. We recently published the results of a phase 1 trial of idasanutlin in patients with polycythemia vera (PV) that revealed tolerability and clinical activity. Here, we present data indicating that idasanutlin therapy is associated with expansion of TP53 mutant subclones. End-of-study sequencing of patients found that 5 patients in this trial harbored 12 TP53 mutations; however, only 1 patient had been previously identified as having a TP53 mutation at baseline. To identify the origin of these mutations, further analysis of raw sequencing data of baseline samples was performed and revealed that a subset of these mutations was present at baseline and expanded during treatment with idasanutlin. Follow-up samples were obtained from 4 of 5 patients in this cohort, and we observed that after cessation of idasanutlin, the variant allele frequency (VAF) of 8 of 9 TP53 mutations decreased. Furthermore, disease progression to myelofibrosis or myeloproliferative neoplasm blast phase was not observed in any of these patients after 19- to 32-month observation. These data suggest that idasanutlin treatment may promote transient TP53 mutant clonal expansion. A larger study geared toward high-resolution detection of low VAF mutations is required to explore whether patients acquire de novo TP53 mutations after idasanutlin therapy.


Assuntos
Policitemia Vera , Células Clonais/metabolismo , Humanos , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas , Proteína Supressora de Tumor p53/genética , para-Aminobenzoatos
15.
Blood Adv ; 4(20): 5246-5256, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33104796

RESUMO

Myeloproliferative neoplasms (MPN) that have evolved into accelerated or blast phase disease (MPN-AP/BP) have poor outcomes with limited treatment options and therefore represent an urgent unmet need. We have previously demonstrated in a multicenter, phase 1 trial conducted through the Myeloproliferative Neoplasms Research Consortium that the combination of ruxolitinib and decitabine is safe and tolerable and is associated with a favorable overall survival (OS). In this phase 2 trial, 25 patients with MPN-AP/BP were treated at the recommended phase 2 dose of ruxolitinib 25 mg twice daily for the induction cycle followed by 10 mg twice daily for subsequent cycles in combination with decitabine 20 mg/m2 for 5 consecutive days in a 28-day cycle. Nineteen patients died during the study follow-up. The median OS for all patients on study was 9.5 months (95% confidence interval, 4.3-12.0). Overall response rate (complete remission + incomplete platelet recovery + partial remission) was 11/25 (44%) and response was not associated with improved survival. We conclude that the combination of decitabine and ruxolitinib was well tolerated, demonstrated favorable OS, and represents a therapeutic option for this high-risk patient population. This trial was registered at www.clinicaltrials.gov as #NCT02076191.


Assuntos
Crise Blástica , Pirazóis , Crise Blástica/tratamento farmacológico , Decitabina/uso terapêutico , Humanos , Nitrilas , Pirazóis/uso terapêutico , Pirimidinas , Resultado do Tratamento
16.
Nat Commun ; 11(1): 3617, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680998

RESUMO

Multiple myeloma (MM) progression is characterized by the seeding of cancer cells in different anatomic sites. To characterize this evolutionary process, we interrogated, by whole genome sequencing, 25 samples collected at autopsy from 4 patients with relapsed MM and an additional set of 125 whole exomes collected from 51 patients. Mutational signatures analysis showed how cytotoxic agents introduce hundreds of unique mutations in each surviving cancer cell, detectable by bulk sequencing only in cases of clonal expansion of a single cancer cell bearing the mutational signature. Thus, a unique, single-cell genomic barcode can link chemotherapy exposure to a discrete time window in a patient's life. We leveraged this concept to show that MM systemic seeding is accelerated at relapse and appears to be driven by the survival and subsequent expansion of a single myeloma cell following treatment with high-dose melphalan therapy and autologous stem cell transplant.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Evolução Clonal/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Masculino , Melfalan/administração & dosagem , Melfalan/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mutação/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Análise de Célula Única , Análise Espaço-Temporal , Transplante Autólogo/efeitos adversos , Sequenciamento Completo do Genoma
17.
Nat Med ; 26(10): 1549-1556, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747829

RESUMO

Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6-8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response.


Assuntos
Instabilidade Genômica/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Proteína Supressora de Tumor p53/genética , Alelos , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Perda de Heterozigosidade/genética , Masculino , Mutação , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Fenótipo , Prognóstico , Análise de Sobrevida , Resultado do Tratamento
18.
Blood Cancer J ; 9(12): 101, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827071

RESUMO

Recent genomic research efforts in multiple myeloma have revealed clinically relevant molecular subgroups beyond conventional cytogenetic classifications. Implementing these advances in clinical trial design and in routine patient care requires a new generation of molecular diagnostic tools. Here, we present a custom capture next-generation sequencing (NGS) panel designed to identify rearrangements involving the IGH locus, arm level, and focal copy number aberrations, as well as frequently mutated genes in multiple myeloma in a single assay. We sequenced 154 patients with plasma cell disorders and performed a head-to-head comparison with the results from conventional clinical assays, i.e., fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarray. Our custom capture NGS panel had high sensitivity (>99%) and specificity (>99%) for detection of IGH translocations and relevant chromosomal gains and losses in multiple myeloma. In addition, the assay was able to capture novel genomic markers associated with poor outcome such as bi-allelic events involving TP53. In summary, we show that a multiple myeloma designed custom capture NGS panel can detect IGH translocations and CNAs with very high concordance in relation to FISH and SNP microarrays and importantly captures the most relevant and recurrent somatic mutations in multiple myeloma rendering this approach highly suitable for clinical application in the modern era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA