Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artif Organs ; 35(5): 522-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21595722

RESUMO

This article summarizes the use of computational fluid dynamics (CFD) to design a novel suspended Tesla left ventricular assist device. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750, and 7000 rpm and at flow rates varying from 3 to 7 liters per minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mm Hg with a hydraulic efficiency of 16% at the design conditions of 6 LPM through flow and a 6750 rpm rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Insuficiência Cardíaca/terapia , Coração Auxiliar , Hidrodinâmica , Função Ventricular Esquerda , Fenômenos Biomecânicos , Insuficiência Cardíaca/fisiopatologia , Coração Auxiliar/efeitos adversos , Hemodinâmica , Hemólise , Humanos , Modelos Cardiovasculares , Desenho de Prótese , Estresse Mecânico
2.
J Biomech Eng ; 131(11): 111009, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20353260

RESUMO

Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.


Assuntos
Coração Auxiliar , Pesquisa , Reologia/instrumentação , Diagnóstico por Imagem/métodos , Humanos , Reologia/métodos
3.
Cardiovasc Eng Technol ; 5(1): 54-69, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24634700

RESUMO

We compare the velocity and shear obtained from particle image velocimetry (PIV) and computational fluid dynamics (CFD) in a pulsatile ventricular assist device (VAD) to further test our thrombus predictive methodology using microscopy data from an explanted VAD. To mimic physiological conditions in vitro, a mock circulatory loop is used with a blood analog that matched blood's viscoelastic behavior at 40% hematocrit. Under normal physiologic pressures and for a heart rate of 75 bpm, PIV data is acquired and wall shear maps are produced. The resolution of the PIV shear rate calculations are tested using the CFD and found to be in the same range. A bovine study, using a model of the 50 cc Penn State V-2 VAD, for 30 days at a constant beat rate of 75 beats per minute (bpm) provides the microscopic data whereby after the 30 days, the device is explanted and the sac surface analyzed using scanning electron microscopy (SEM) and, after immunofluorescent labeling for platelets and fibrin, confocal microscopy. Areas are examined based on PIV measurements and CFD, with special attention to low shear regions where platelet and fibrin deposition are most likely to occur. Data collected within the outlet port in a direction normal to the front wall of the VAD shows that some regions experience wall shear rates less than 500 s-1, which increases the likelihood of platelet and fibrin deposition. Despite only one animal study, correlations between PIV, CFD, and in vivo data show promise. Deposition probability is quantified by the thrombus susceptibility potential, a calculation to correlate low shear and time of shear with deposition.

4.
ASAIO J ; 55(6): 556-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19770799

RESUMO

The design and initial test results of a new passively suspended Tesla type left ventricular assist device blood pump are described. Computational fluid dynamics (CFD) analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 L/min at a 70 mm Hg head rise at 8,000 revolutions per minute (RPM). The pump has demonstrated a normalized index of hemolysis level below 0.02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned and endurance testing of the device.


Assuntos
Circulação Assistida/instrumentação , Coração Auxiliar , Animais , Bovinos , Desenho de Equipamento , Ventrículos do Coração , Hemólise
5.
ASAIO J ; 53(2): 122-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17413548

RESUMO

An unsteady computational fluid dynamic methodology was developed so that design analyses could be undertaken for devices such as the 50cc Penn State positive-displacement left ventricular assist device (LVAD). The piston motion observed in vitro was modeled, yielding the physiologic flow waveform observed during pulsatile experiments. Valve closure was modeled numerically by locally increasing fluid viscosity during the closed phase. Computational geometry contained Bjork-Shiley Monostrut mechanical heart valves in mitral and aortic positions. Cases for computational analysis included LVAD operation under steady-flow and pulsatile-flow conditions. Computations were validated by comparing simulation results with previously obtained in vitro particle image velocimetry (PIV) measurements. The steady portion of the analysis studied effects of mitral valve orientation, comparing the computational results with in vitro data obtained from mock circulatory loop experiments. The velocity field showed good qualitative agreement with the in vitro PIV data. The pulsatile flow simulations modeled the unsteady flow phenomena associated with a positive-displacement LVAD operating through several beat cycles. Flow velocity gradients allowed computation of the scalar wall strain rate, an important factor for determining hemodynamics of the device. Velocity magnitude contours compared well with PIV data throughout the cycle. Computational wall shear rates over the pulsatile cycle were found to be in the same range as wall shear rates observed in vitro.


Assuntos
Coração Auxiliar , Fluxo Pulsátil , Aorta/anatomia & histologia , Aorta/fisiologia , Valva Aórtica/anatomia & histologia , Valva Aórtica/fisiologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Viscosidade Sanguínea , Simulação por Computador , Humanos , Óleo Mineral/química , Valva Mitral/anatomia & histologia , Valva Mitral/fisiologia , Modelos Cardiovasculares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA