Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814146

RESUMO

Opsoclonus-myoclonus syndrome (OMS) as a rare neurological encephalopathic entity associated with non-specific infections or cancer processes has been repeatedly described in the setting of SARS-CoV-2 infection. We report a case of a 53-year-old man with SARS-CoV-2 infection, who developed clinical features of opsoclonus-myoclonus ataxia syndrome including cognitive impairments with a prolonged course of disease. Of particular note, cerebrospinal fluid (CSF) analysis revealed the production of myelin oligodendrocyte glycoprotein (MOG) antibodies, suggesting an underlying neuroimmunological mechanism associated with infection with the novel SARS-CoV-2 virus.

2.
Cochrane Database Syst Rev ; 3: CD013712, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864008

RESUMO

BACKGROUND: Previous systematic reviews and randomised controlled trials have investigated the effect of post-stroke trunk training. Findings suggest that trunk training improves trunk function and activity or the execution of a task or action by an individual. But it is unclear what effect trunk training has on daily life activities, quality of life, and other outcomes. OBJECTIVES: To assess the effectiveness of trunk training after stroke on activities of daily living (ADL), trunk function, arm-hand function or activity, standing balance, leg function, walking ability, and quality of life when comparing with both dose-matched as non-dose-matched control groups. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase, and five other databases to 25 October 2021. We searched trial registries to identify additional relevant published, unpublished, and ongoing trials. We hand searched the bibliographies of included studies. SELECTION CRITERIA: We selected randomised controlled trials comparing trunk training versus non-dose-matched or dose-matched control therapy including adults (18 years or older) with either ischaemic or haemorrhagic stroke. Outcome measures of trials included ADL, trunk function, arm-hand function or activity, standing balance, leg function, walking ability, and quality of life. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Two main analyses were carried out. The first analysis included trials where the therapy duration of control intervention was non-dose-matched with the therapy duration of the experimental group and the second analysis where there was comparison with a dose-matched control intervention (equal therapy duration in both the control as in the experimental group).  MAIN RESULTS: We included 68 trials with a total of 2585 participants. In the analysis of the non-dose-matched groups (pooling of all trials with different training duration in the experimental as in the control intervention), we could see that trunk training had a positive effect on ADL (standardised mean difference (SMD) 0.96; 95% confidence interval (CI) 0.69 to 1.24; P < 0.001; 5 trials; 283 participants; very low-certainty evidence), trunk function (SMD 1.49, 95% CI 1.26 to 1.71; P < 0.001; 14 trials, 466 participants; very low-certainty evidence), arm-hand function (SMD 0.67, 95% CI 0.19 to 1.15; P = 0.006; 2 trials, 74 participants; low-certainty evidence), arm-hand activity (SMD 0.84, 95% CI 0.009 to 1.59; P = 0.03; 1 trial, 30 participants; very low-certainty evidence), standing balance (SMD 0.57, 95% CI 0.35 to 0.79; P < 0.001; 11 trials, 410 participants; very low-certainty evidence), leg function (SMD 1.10, 95% CI 0.57 to 1.63; P < 0.001; 1 trial, 64 participants; very low-certainty evidence), walking ability (SMD 0.73, 95% CI 0.52 to 0.94; P < 0.001; 11 trials, 383 participants; low-certainty evidence) and quality of life (SMD 0.50, 95% CI 0.11 to 0.89; P = 0.01; 2 trials, 108 participants; low-certainty evidence). Non-dose-matched trunk training led to no difference for the outcome serious adverse events (odds ratio: 7.94, 95% CI 0.16 to 400.89; 6 trials, 201 participants; very low-certainty evidence). In the analysis of the dose-matched groups (pooling of all trials with equal training duration in the experimental as in the control intervention), we saw that trunk training had a positive effect on trunk function (SMD 1.03, 95% CI 0.91 to 1.16; P < 0.001; 36 trials, 1217 participants; very low-certainty evidence), standing balance (SMD 1.00, 95% CI 0.86 to 1.15; P < 0.001; 22 trials, 917 participants; very low-certainty evidence), leg function (SMD 1.57, 95% CI 1.28 to 1.87; P < 0.001; 4 trials, 254 participants; very low-certainty evidence), walking ability (SMD 0.69, 95% CI 0.51 to 0.87; P < 0.001; 19 trials, 535 participants; low-certainty evidence) and quality of life (SMD 0.70, 95% CI 0.29 to 1.11; P < 0.001; 2 trials, 111 participants; low-certainty evidence), but not for ADL (SMD 0.10; 95% confidence interval (CI) -0.17 to 0.37; P = 0.48; 9 trials; 229 participants; very low-certainty evidence), arm-hand function (SMD 0.76, 95% CI -0.18 to 1.70; P = 0.11; 1 trial, 19 participants; low-certainty evidence), arm-hand activity (SMD 0.17, 95% CI -0.21 to 0.56; P = 0.38; 3 trials, 112 participants; very low-certainty evidence). Trunk training also led to no difference for the outcome serious adverse events (odds ratio (OR): 7.39, 95% CI 0.15 to 372.38; 10 trials, 381 participants; very low-certainty evidence). Time post stroke led to a significant subgroup difference for standing balance (P < 0.001) in non-dose-matched therapy. In non-dose-matched therapy, different trunk therapy approaches had a significant effect on ADL (< 0.001), trunk function (P < 0.001) and standing balance (< 0.001). When participants received dose-matched therapy, analysis of subgroup differences showed that the trunk therapy approach had a significant effect on ADL (P = 0.001), trunk function (P < 0.001), arm-hand activity (P < 0.001), standing balance (P = 0.002), and leg function (P = 0.002). Also for dose-matched therapy, subgroup analysis for time post stroke resulted in a significant difference for the outcomes standing balance (P < 0.001), walking ability (P = 0.003) and leg function (P < 0.001), time post stroke significantly modified the effect of intervention.  Core-stability trunk (15 trials), selective-trunk (14 trials) and unstable-trunk (16 trials) training approaches were mostly applied in the included trials. AUTHORS' CONCLUSIONS: There is evidence to suggest that trunk training as part of rehabilitation improves ADL, trunk function, standing balance, walking ability, upper and lower limb function, and quality of life in people after stroke. Core-stability, selective-, and unstable-trunk training were the trunk training approaches mostly applied in the included trials. When considering only trials with a low risk of bias, results were mostly confirmed, with very low to moderate certainty, depending on the outcome.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Adulto , Humanos , Atividades Cotidianas , Mãos , Qualidade de Vida
3.
Cochrane Database Syst Rev ; 10: CD012612, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695300

RESUMO

BACKGROUND: Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation. OBJECTIVES: To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation. SEARCH METHODS: We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death. DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs. MAIN RESULTS: The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants.  Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI -0.02 to 0.28; P = 0.09; I2 = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI -0.11 to 0.29; P = 0.36; I2 = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI -0.03 to 0.53; P = 0.08; I2 = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I2 = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I2 = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06). AUTHORS' CONCLUSIONS: An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Adulto , Humanos , Modalidades de Fisioterapia , Extremidade Superior
4.
Cochrane Database Syst Rev ; 10: CD006185, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33091160

RESUMO

BACKGROUND: Electromechanical- and robot-assisted gait-training devices are used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane Review first published in 2007 and previously updated in 2017. OBJECTIVES: Primary • To determine whether electromechanical- and robot-assisted gait training versus normal care improves walking after stroke Secondary • To determine whether electromechanical- and robot-assisted gait training versus normal care after stroke improves walking velocity, walking capacity, acceptability, and death from all causes until the end of the intervention phase SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched 6 January 2020); the Cochrane Central Register of Controlled Trials (CENTRAL; 2020 Issue 1), in the Cochrane Library; MEDLINE in Ovid (1950 to 6 January 2020); Embase (1980 to 6 January 2020); the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 20 November 2019); the Allied and Complementary Medicine Database (AMED; 1985 to 6 January 2020); Web of Science (1899 to 7 January 2020); SPORTDiscus (1949 to 6 January 2020); the Physiotherapy Evidence Database (PEDro; searched 7 January 2020); and the engineering databases COMPENDEX (1972 to 16 January 2020) and Inspec (1969 to 6 January 2020). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trial authors in an effort to identify further published, unpublished, and ongoing trials. SELECTION CRITERIA: We included all randomised controlled trials and randomised controlled cross-over trials in people over the age of 18 years diagnosed with stroke of any severity, at any stage, in any setting, evaluating electromechanical- and robot-assisted gait training versus normal care. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, assessed methodological quality and risk of bias, and extracted data. We assessed the quality of evidence using the GRADE approach. The primary outcome was the proportion of participants walking independently at follow-up. MAIN RESULTS: We included in this review update 62 trials involving 2440 participants. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of participants becoming independent in walking (odds ratio (random effects) 2.01, 95% confidence interval (CI) 1.51 to 2.69; 38 studies, 1567 participants; P < 0.00001; I² = 0%; high-quality evidence) and increased mean walking velocity (mean difference (MD) 0.06 m/s, 95% CI 0.02 to 0.10; 42 studies, 1600 participants; P = 0.004; I² = 60%; low-quality evidence) but did not improve mean walking capacity (MD 10.9 metres walked in 6 minutes, 95% CI -5.7 to 27.4; 24 studies, 983 participants; P = 0.2; I² = 42%; moderate-quality evidence). Electromechanical-assisted gait training did not increase the risk of loss to the study during intervention nor the risk of death from all causes. Results must be interpreted with caution because (1) some trials investigated people who were independent in walking at the start of the study, (2) we found variation between trials with respect to devices used and duration and frequency of treatment, and (3) some trials included devices with functional electrical stimulation. Post hoc analysis showed that people who are non-ambulatory at the start of the intervention may benefit but ambulatory people may not benefit from this type of training. Post hoc analysis showed no differences between the types of devices used in studies regarding ability to walk but revealed differences between devices in terms of walking velocity and capacity. AUTHORS' CONCLUSIONS: People who receive electromechanical-assisted gait training in combination with physiotherapy after stroke are more likely to achieve independent walking than people who receive gait training without these devices. We concluded that eight patients need to be treated to prevent one dependency in walking. Specifically, people in the first three months after stroke and those who are not able to walk seem to benefit most from this type of intervention. The role of the type of device is still not clear. Further research should consist of large definitive pragmatic phase 3 trials undertaken to address specific questions about the most effective frequency and duration of electromechanical-assisted gait training, as well as how long any benefit may last. Future trials should consider time post stroke in their trial design.


Assuntos
Aparelhos Ortopédicos , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Caminhada , Idoso , Viés , Causas de Morte , Terapia Combinada/instrumentação , Terapia Combinada/métodos , Intervalos de Confiança , Terapia por Estimulação Elétrica , Desenho de Equipamento , Terapia por Exercício/métodos , Marcha , Humanos , Pessoa de Meia-Idade , Razão de Chances , Ensaios Clínicos Controlados Aleatórios como Assunto , Reabilitação do Acidente Vascular Cerebral/instrumentação , Velocidade de Caminhada
5.
Cochrane Database Syst Rev ; 11: CD009645, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175411

RESUMO

BACKGROUND: Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES: To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA: This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS: We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence).  AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.


Assuntos
Atividades Cotidianas , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adulto , Idoso , Viés , Transtornos Cognitivos/reabilitação , Intervalos de Confiança , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Força Muscular , Pacientes Desistentes do Tratamento/estatística & dados numéricos , Transtornos da Percepção/reabilitação , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Extremidade Superior/fisiologia
6.
J Neuroeng Rehabil ; 17(1): 38, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131857

RESUMO

BACKGROUND: Many studies showed that robot-assisted gait training might improve walking of patients after stroke. The question remains whether patients with other neurological diagnoses can improve their ability to walk by training in a gait center. Aim of the present study was therefore to investigate the effects of a gait center training in inpatient neurological rehabilitation on walking ability. METHODS: We implemented a gait center training in addition to individual inpatient rehabilitation. Our primary outcome was walking ability based on the Functional Ambulation Categories (FAC). Our secondary outcomes were vital capacity and blood pressure. We predefined subgroups of patients with ischemic and hemorrhagic stroke and critical illness myopathy (CIM) and polyneuropathy (CIP). RESULTS: We included 780 patients from our inpatient rehabilitation center in our cohort study. We analyzed 329 patients with ischemic, 131 patients with hemorrhagic stroke and 74 patients with CIP/ CIM. A large number of patients were able to improve their ability to walk. At the end of rehabilitation, patients with ischemic stroke and FAC 3 = increased theirFAC scores by 5%, FAC 4 = 4% and FAC 5 = 7%. Patients with hemorrhagic stroke and FAC 3 = increased by 5%, FAC 4 = 11% and FAC 5 = 9% and patients with CIP/CIM increased by FAC 3 = 3%, FAC 4 = 22% and FAC 5 = 26%. The largest improvement in walking ability during rehabilitation had patients with a FAC = 1 at baseline who improved by a median of 1.4 FAC points (p < 0.001). After adjusting for the number of gait training sessions, the largest improvement in walking ability during rehabilitation had patients with a FAC = 0 at baseline who improved by 1.8 FAC points (p < 0.001). CONCLUSIONS: Implementation of an additional gait center training may significantly improve walking ability in neurological rehabilitation.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Reabilitação Neurológica/métodos , Idoso , Estudos de Coortes , Estado Terminal , Terapia por Exercício/instrumentação , Terapia por Exercício/métodos , Exoesqueleto Energizado , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Doenças Musculares/complicações , Doenças Musculares/reabilitação , Reabilitação Neurológica/instrumentação , Polineuropatias/complicações , Polineuropatias/reabilitação , Acidente Vascular Cerebral/complicações , Caminhada
7.
J Neuroeng Rehabil ; 17(1): 88, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641152

RESUMO

BACKGROUND: Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving aphasia after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types. METHODS: This is a systematic review of randomized controlled trials with network meta-analysis (NMA). We searched the following databases until 4 February 2020: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of functional communication, versus control, after stroke. PROSPERO ID: CRD42019135696. RESULTS: We included 25 studies with 471 participants. Our NMA showed that tDCS did not improve our primary outcome, that of functional communication. There was evidence of an effect of anodal tDCS, particularly over the left inferior frontal gyrus, in improving our secondary outcome, that of performance in naming nouns (SMD = 0.51; 95% CI 0.11 to 0.90). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events. CONCLUSION: Comparing different application/protocols of tDCS shows that the anodal application, particularly over the left inferior frontal gyrus, seems to be the most promising tDCS treatment option to improve performance in naming in people with stroke.


Assuntos
Afasia/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Afasia/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
8.
J Neuroeng Rehabil ; 17(1): 83, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605587

RESUMO

BACKGROUND: The aim of the present study was to to assess the relative effectiveness of the various types of electromechanical-assisted arm devices and approaches after stroke. METHOD: This is a systematic review of randomized controlled trials with network meta-analysis. Our primary endpoints were activities of daily living (measured e.g. with Barthel-Index) and hand-arm function (measured e.g. with the Fugl-Meyer Scale for the upper limb), our secondary endpoints were hand-arm strength (measured e.g. with the Motricity Index) and safety. We used conventional arm training as our reference category and compared it with different intervention categories of electromechanical-assisted arm training depending on the therapy approach. We did indirect comparisons between the type of robotic device. We considered the heterogeneity of the studies by means of confidence and prediction intervals. RESULTS: Fifty five randomized controlled trials, including 2654 patients with stroke, met our inclusion criteria. For the primary endpoints activities of daily living and hand-arm function and the secondary endpoint hand-arm strength, none of the interventions achieved statistically significant improvements, taking into account the heterogeneity of the studies. Safety did not differ with regard to the individual interventions of arm rehabilitation after stroke. CONCLUSION: The outcomes of robotic-assisted arm training were comparable with conventional therapy. Indirect comparisons suggest that no one type of robotic device is any better or worse than any other device, providing no clear evidence to support the selection of specific types of robotic device to promote hand-arm recovery. TRIAL REGISTRATION: PROSPERO 2017 CRD42017075411.


Assuntos
Exoesqueleto Energizado , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Atividades Cotidianas , Feminino , Humanos , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento , Extremidade Superior/fisiopatologia
9.
Cochrane Database Syst Rev ; 5: CD009760, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31111960

RESUMO

BACKGROUND: Stroke is one of the leading causes of disability worldwide and aphasia among survivors is common. Current speech and language therapy (SLT) strategies have only limited effectiveness in improving aphasia. A possible adjunct to SLT for improving SLT outcomes might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve aphasia. OBJECTIVES: To assess the effects of tDCS for improving aphasia in people who have had a stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (June 2018), CENTRAL (Cochrane Library, June 2018), MEDLINE (1948 to June 2018), Embase (1980 to June 2018), CINAHL (1982 to June 2018), AMED (1985 to June 2018), Science Citation Index (1899 to June 2018), and seven additional databases. We also searched trial registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA: We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we only analysed the first period as a parallel group design) comparing tDCS versus control in adults with aphasia due to stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias, and extracted data. If necessary, we contacted study authors for additional information. We collected information on dropouts and adverse events from the trials. MAIN RESULTS: We included 21 trials involving 421 participants in the qualitative synthesis. Three studies with 112 participants used formal outcome measures for our primary outcome measure of functional communication - that is, measuring aphasia in a real-life communicative setting. There was no evidence of an effect (standardised mean difference (SMD) 0.17, 95% confidence interval (CI) -0.20 to 0.55; P = 0.37; I² = 0%; low quality of evidence; inverse variance method with random-effects model; higher SMD reflecting benefit from tDCS; moderate quality of evidence). At follow-up, there also was no evidence of an effect (SMD 0.14, 95% CI -0.31 to 0.58; P = 0.55; 80 participants ; 2 studies; I² = 0%; very low quality of evidence; higher SMD reflecting benefit from tDCS; moderate quality of evidence).For our secondary outcome measure, accuracy in naming nouns at the end of intervention, there was evidence of an effect (SMD 0.42, 95% CI 0.19 to 0.66; P = 0.0005; I² = 0%; 298 participants; 11 studies; inverse variance method with random-effects model; higher SMD reflecting benefit from tDCS; moderate quality of evidence). There was an effect for the accuracy in naming nouns at follow-up (SMD 0.87, 95% CI 0.25 to 1.48; P = 0.006; 80 participants; 2 studies; I² = 32%; low quality of evidence); however the results were not statistically significant in our sensitivity analysis regarding the assumptions of the underlying correlation coefficient for imputing missing standard deviations of change scores. There was no evidence of an effect regarding accuracy in naming verbs post intervention (SMD 0.19, 95% CI -0.68 to 1.06; P = 0.67; I² = 0%; 21 participants; 3 studies; very low quality of evidence). We found no studies examining the effect of tDCS on cognition in people with aphasia after stroke. We did not find reported serious adverse events and the proportion of dropouts and adverse events was comparable between groups (odds ratio (OR) 0.54, 95% CI 0.21 to 1.37; P = 0.19; I² = 0%; Mantel-Haenszel method with random-effects model; 345 participants; 15 studies; low quality of evidence). AUTHORS' CONCLUSIONS: Currently there is no evidence of the effectiveness of tDCS (anodal tDCS, cathodal tDCS and Dual-tDCS) versus control (sham tDCS) for improving functional communication in people with aphasia after stroke (low quality of evidence). However, there is limited evidence that tDCS may improve naming performance in naming nouns (moderate quality of evidence), but not verbs (very low quality of evidence) at the end of the intervention period and possibly also at follow-up. Further methodologically rigorous RCTs with adequate sample size calculation are needed in this area to determine the effectiveness of this intervention. Data on functional communication and on adverse events should routinely be collected and presented in further publications as well as data at follow-up. Further study on the relationship between language/aphasia and cognition may be required, and improved cognitive assessments for patients with aphasia developed, prior to the use of tDCS to directly target cognition in aphasia. Authors should state total values at post-intervention as well as their corresponding change scores with standard deviations.


Assuntos
Afasia/terapia , Acidente Vascular Cerebral/complicações , Estimulação Transcraniana por Corrente Contínua/métodos , Afasia/etiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Fonoterapia , Reabilitação do Acidente Vascular Cerebral
11.
Cochrane Database Syst Rev ; 9: CD006876, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30175845

RESUMO

BACKGROUND: Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. OBJECTIVES: To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. SEARCH METHODS: We searched the Cochrane Stroke Group's Trials Register (last searched January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2018, Issue 1), MEDLINE (1950 to January 2018), Embase (1980 to January 2018), CINAHL (1982 to January 2018), AMED (1985 to January 2018), SPORTDiscus (1949 to January 2018), PEDro (searched February 2018), Compendex (1972 to January 2018), and Inspec (1969 to January 2018). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. SELECTION CRITERIA: Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, used the GRADE approach to assess the quality of the body of evidence, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. MAIN RESULTS: We included 45 trials (involving 1619 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.31, 95% confidence interval (CI) 0.09 to 0.52, P = 0.0005; I² = 59%; 24 studies, 957 participants, high-quality evidence), arm function (SMD 0.32, 95% CI 0.18 to 0.46, P < 0.0001, I² = 36%, 41 studies, 1452 participants, high-quality evidence), and arm muscle strength (SMD 0.46, 95% CI 0.16 to 0.77, P = 0.003, I² = 76%, 23 studies, 826 participants, high-quality evidence). Electromechanical and robot-assisted arm training did not increase the risk of participant dropout (RD 0.00, 95% CI -0.02 to 0.02, P = 0.93, I² = 0%, 45 studies, 1619 participants, high-quality evidence), and adverse events were rare. AUTHORS' CONCLUSIONS: People who receive electromechanical and robot-assisted arm training after stroke might improve their activities of daily living, arm function, and arm muscle strength. However, the results must be interpreted with caution although the quality of the evidence was high, because there were variations between the trials in: the intensity, duration, and amount of training; type of treatment; participant characteristics; and measurements used.


Assuntos
Atividades Cotidianas , Reabilitação do Acidente Vascular Cerebral , Braço , Humanos , Força Muscular , Robótica , Acidente Vascular Cerebral
12.
Cochrane Database Syst Rev ; 7: CD008449, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993119

RESUMO

BACKGROUND: Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the person's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. OBJECTIVES: To summarise the effectiveness of mirror therapy compared with no treatment, placebo or sham therapy, or other treatments for improving motor function and motor impairment after stroke. We also aimed to assess the effects of mirror therapy on activities of daily living, pain, and visuospatial neglect. SEARCH METHODS: We searched the Cochrane Stroke Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, PsycINFO and PEDro (last searched 16 August 2017). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists, and contacted trialists, researchers and experts in our field of study. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for people after stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality, assessed risks of bias in the included studies, and extracted data. We assessed the quality of the evidence using the GRADE approach. We analysed the results as standardised mean differences (SMDs) or mean differences (MDs) for continuous variables, and as odds ratios (ORs) for dichotomous variables. MAIN RESULTS: We included 62 studies with a total of 1982 participants that compared mirror therapy with other interventions. Of these, 57 were randomised controlled trials and five randomised cross-over trials. Participants had a mean age of 59 years (30 to 73 years). Mirror therapy was provided three to seven times a week, between 15 and 60 minutes for each session for two to eight weeks (on average five times a week, 30 minutes a session for four weeks).When compared with all other interventions, we found moderate-quality evidence that mirror therapy has a significant positive effect on motor function (SMD 0.47, 95% CI 0.27 to 0.67; 1173 participants; 36 studies) and motor impairment (SMD 0.49, 95% CI 0.32 to 0.66; 1292 participants; 39 studies). However, effects on motor function are influenced by the type of control intervention. Additionally, based on moderate-quality evidence, mirror therapy may improve activities of daily living (SMD 0.48, 95% CI 0.30 to 0.65; 622 participants; 19 studies). We found low-quality evidence for a significant positive effect on pain (SMD -0.89, 95% CI -1.67 to -0.11; 248 participants; 6 studies) and no clear effect for improving visuospatial neglect (SMD 1.06, 95% CI -0.10 to 2.23; 175 participants; 5 studies). No adverse effects were reported. AUTHORS' CONCLUSIONS: The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, motor impairment, activities of daily living, and pain, at least as an adjunct to conventional rehabilitation for people after stroke. Major limitations are small sample sizes and lack of reporting of methodological details, resulting in uncertain evidence quality.


Assuntos
Técnicas de Exercício e de Movimento/métodos , Paresia/reabilitação , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Atividades Cotidianas , Adulto , Idoso , Técnicas de Exercício e de Movimento/instrumentação , Lateralidade Funcional/fisiologia , Humanos , Pessoa de Meia-Idade , Paresia/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações
13.
J Neuroeng Rehabil ; 15(1): 106, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442158

RESUMO

Transcranial Direct Current Stimulation (tDCS) is a potentially useful tool to improve upper limb rehabilitation outcomes after stroke, although its effects in this regard have shown to be limited so far. Additional increases in effectiveness of tDCS in upper limb rehabilitation after stroke may for example be achieved by (1) applying a more focal stimulation approach like high definition tDCS (HD-tDCS), (2) involving functional imaging techniques during stimulation to identify target areas more exactly, (3) applying tDCS during Electroencephalography (EEG) (EEG-tDCS), (4) focusing on an effective upper limb rehabilitation strategy as an effective base treatment after stroke. Perhaps going even beyond the application of tDCS and applying alternative stimulation techniques such as transcranial Alternating Current Stimulation (tACS) or transcranial Random Noise Stimulation (tRNS) will further increase effectiveness of upper limb rehabilitation after stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/tendências , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Transcraniana por Corrente Contínua/tendências , Humanos , Resultado do Tratamento , Extremidade Superior/fisiopatologia
14.
Cochrane Database Syst Rev ; 8: CD002840, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28815562

RESUMO

BACKGROUND: Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. OBJECTIVES: To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. SELECTION CRITERIA: Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. MAIN RESULTS: We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking independently compared with other physiotherapy interventions (risk difference (RD) -0.00, 95% confidence interval (CI) -0.02 to 0.02; 18 trials, 1210 participants; P = 0.94; I² = 0%; low-quality evidence). Overall, the use of treadmill training in walking rehabilitation for people after stroke increased the walking velocity and walking endurance significantly. The pooled mean difference (MD) (random-effects model) for walking velocity was 0.06 m/s (95% CI 0.03 to 0.09; 47 trials, 2323 participants; P < 0.0001; I² = 44%; moderate-quality evidence) and the pooled MD for walking endurance was 14.19 metres (95% CI 2.92 to 25.46; 28 trials, 1680 participants; P = 0.01; I² = 27%; moderate-quality evidence). Overall, the use of treadmill training with body weight support in walking rehabilitation for people after stroke did not increase the walking velocity and walking endurance at the end of scheduled follow-up. The pooled MD (random-effects model) for walking velocity was 0.03 m/s (95% CI -0.05 to 0.10; 12 trials, 954 participants; P = 0.50; I² = 55%; low-quality evidence) and the pooled MD for walking endurance was 21.64 metres (95% CI -4.70 to 47.98; 10 trials, 882 participants; P = 0.11; I² = 47%; low-quality evidence). In 38 studies with a total of 1571 participants who were independent in walking at study onset, the use of treadmill training increased the walking velocity significantly. The pooled MD (random-effects model) for walking velocity was 0.08 m/s (95% CI 0.05 to 0.12; P < 0.00001; I2 = 49%). There were insufficient data to comment on any effects on quality of life or activities of daily living. Adverse events and dropouts did not occur more frequently in people receiving treadmill training and these were not judged to be clinically serious events. AUTHORS' CONCLUSIONS: Overall, people after stroke who receive treadmill training, with or without body weight support, are not more likely to improve their ability to walk independently compared with people after stroke not receiving treadmill training, but walking speed and walking endurance may improve slightly in the short term. Specifically, people with stroke who are able to walk (but not people who are dependent in walking at start of treatment) appear to benefit most from this type of intervention with regard to walking speed and walking endurance. This review did not find, however, that improvements in walking speed and endurance may have persisting beneficial effects. Further research should specifically investigate the effects of different frequencies, durations, or intensities (in terms of speed increments and inclination) of treadmill training, as well as the use of handrails, in ambulatory participants, but not in dependent walkers.


Assuntos
Terapia por Exercício/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Velocidade de Caminhada , Peso Corporal , Terapia por Exercício/instrumentação , Humanos , Pessoa de Meia-Idade , Aparelhos Ortopédicos , Pacientes Desistentes do Tratamento/estatística & dados numéricos , Ensaios Clínicos Controlados Aleatórios como Assunto , Caminhada , Suporte de Carga
15.
Cochrane Database Syst Rev ; 5: CD006185, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488268

RESUMO

BACKGROUND: Electromechanical- and robotic-assisted gait-training devices are used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane Review first published in 2007. OBJECTIVES: To investigate the effects of automated electromechanical- and robotic-assisted gait-training devices for improving walking after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched 9 August 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 8), MEDLINE in Ovid (1950 to 15 August 2016), Embase (1980 to 15 August 2016), CINAHL (1982 to 15 August 2016), AMED (1985 to 15 August 2016), Web of Science (1899 to 16 August 2016), SPORTDiscus (1949 to 15 September 2012), the Physiotherapy Evidence Database (PEDro) (searched 16 August 2016), and the engineering databases COMPENDEX (1972 to 16 November 2012) and Inspec (1969 to 26 August 2016). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted authors in an effort to identify further published, unpublished, and ongoing trials. SELECTION CRITERIA: We included all randomised controlled trials and randomised controlled cross-over trials in people over the age of 18 years diagnosed with stroke of any severity, at any stage, in any setting, evaluating electromechanical- and robotic-assisted gait training versus normal care. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, assessed methodological quality and risk of bias, and extracted the data. The primary outcome was the proportion of participants walking independently at follow-up. MAIN RESULTS: We included 36 trials involving 1472 participants in this review update. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of participants becoming independent in walking (odds ratio (random effects) 1.94, 95% confidence interval (CI) 1.39 to 2.71; P < 0.001; I² = 8%; moderate-quality evidence) but did not significantly increase walking velocity (mean difference (MD) 0.04 m/s, 95% CI 0.00 to 0.09; P = 0.08; I² = 65%; low-quality evidence) or walking capacity (MD 5.84 metres walked in 6 minutes, 95% CI -16.73 to 28.40; P = 0.61; I² = 53%; very low-quality evidence). The results must be interpreted with caution because 1) some trials investigated people who were independent in walking at the start of the study, 2) we found variations between the trials with respect to devices used and duration and frequency of treatment, and 3) some trials included devices with functional electrical stimulation. Our planned subgroup analysis suggested that people in the acute phase may benefit, but people in the chronic phase may not benefit from electromechanical-assisted gait training. Post hoc analysis showed that people who are non-ambulatory at intervention onset may benefit, but ambulatory people may not benefit from this type of training. Post hoc analysis showed no differences between the types of devices used in studies regarding ability to walk, but significant differences were found between devices in terms of walking velocity. AUTHORS' CONCLUSIONS: People who receive electromechanical-assisted gait training in combination with physiotherapy after stroke are more likely to achieve independent walking than people who receive gait training without these devices. We concluded that seven patients need to be treated to prevent one dependency in walking. Specifically, people in the first three months after stroke and those who are not able to walk seem to benefit most from this type of intervention. The role of the type of device is still not clear. Further research should consist of large definitive pragmatic phase III trials undertaken to address specific questions about the most effective frequency and duration of electromechanical-assisted gait training as well as how long any benefit may last.


Assuntos
Aparelhos Ortopédicos , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral , Caminhada , Idoso , Terapia Combinada/instrumentação , Terapia Combinada/métodos , Terapia por Estimulação Elétrica , Desenho de Equipamento , Terapia por Exercício/métodos , Marcha , Humanos , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Velocidade de Caminhada
16.
J Neuroeng Rehabil ; 14(1): 95, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903772

RESUMO

BACKGROUND: Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types. METHODS: We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. PROSPERO ID: CRD42016042055. RESULTS: We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events. CONCLUSION: Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.


Assuntos
Braço/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Atividades Cotidianas , Humanos , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/instrumentação , Resultado do Tratamento
17.
Cochrane Database Syst Rev ; 7: CD010916, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27425786

RESUMO

BACKGROUND: Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder, with the severity of the disability usually increasing with disease duration. IPD affects patients' health-related quality of life, disability, and impairment. Current rehabilitation approaches have limited effectiveness in improving outcomes in patients with IPD, but a possible adjunct to rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in IPD. OBJECTIVES: To assess the effectiveness of tDCS in improving motor and non-motor symptoms in people with IPD. SEARCH METHODS: We searched the following databases (until February 2016): the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library ; 2016 , Issue 2), MEDLINE, EMBASE, CINAHL, AMED, Science Citation Index, the Physiotherapy Evidence Database (PEDro), Rehabdata, and Inspec. In an effort to identify further published, unpublished, and ongoing trials, we searched trial registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA: We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials that compared tDCS versus control in patients with IPD for improving health-related quality of life , disability, and impairment. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS: We included six trials with a total of 137 participants. We found two studies with 45 participants examining the effects of tDCS compared to control (sham tDCS) on our primary outcome measure, impairment, as measured by the Unified Parkinson's Disease Rating Scale (UPDRS). There was very low quality evidence for no effect of tDCS on change in global UPDRS score ( mean difference (MD) -7.10 %, 95% confidence interval (CI -19.18 to 4.97; P = 0.25, I² = 21%, random-effects model). However, there was evidence of an effect on UPDRS part III motor subsection score at the end of the intervention phase (MD -14.43%, 95% CI -24.68 to -4.18; P = 0.006, I² = 2%, random-effects model; very low quality evidence). One study with 25 participants measured the reduction in off and on time with dyskinesia, but there was no evidence of an effect (MD 0.10 hours, 95% CI -0.14 to 0.34; P = 0.41, I² = 0%, random-effects model; and MD 0.00 hours, 95% CI -0.12 to 0.12; P = 1, I² = 0%, random- effects model, respectively; very low quality evidence).Two trials with a total of 41 participants measured gait speed using measures of timed gait at the end of the intervention phase, revealing no evidence of an effect ( standardised mean difference (SMD) 0.50, 95% CI -0.17 to 1.18; P = 0.14, I² = 11%, random-effects model; very low quality evidence). Another secondary outcome was health-related quality of life and we found one study with 25 participants reporting on the physical health and mental health aspects of health-related quality of life (MD 1.00 SF-12 score, 95% CI -5.20 to 7.20; I² = 0%, inverse variance method with random-effects model; very low quality evidence; and MD 1.60 SF-12 score, 95% CI -5.08 to 8.28; I² = 0%, inverse variance method with random-effects model; very low quality evidence, respectively). We found no study examining the effects of tDCS for improving activities of daily living. In two of six studies, dropouts , adverse events, or deaths occurring during the intervention phase were reported. There was insufficient evidence that dropouts , adverse effects, or deaths were higher with intervention (risk difference (RD) 0.04, 95% CI -0.05 to 0.12; P = 0.40, I² = 0%, random-effects model; very low quality evidence).We found one trial with a total of 16 participants examining the effects of tDCS plus movement therapy compared to control (sham tDCS) plus movement therapy on our secondary outcome, gait speed at the end of the intervention phase, revealing no evidence of an effect (MD 0.05 m/s, 95% CI -0.15 to 0.25; inverse variance method with random-effects model; very low quality evidence). We found no evidence of an effect regarding differences in dropouts and adverse effects between intervention and control groups (RD 0.00, 95% CI -0.21 to 0.21; Mantel-Haenszel method with random-effects model; very low quality evidence). AUTHORS' CONCLUSIONS: There is insufficient evidence to determine the effects of tDCS for reducing off time ( when the symptoms are not controlled by the medication) and on time with dyskinesia ( time that symptoms are controlled but the person still experiences involuntary muscle movements ) , and for improving health- related quality of life, disability, and impairment in patients with IPD. Evidence of very low quality indicates no difference in dropouts and adverse events between tDCS and control groups.


Assuntos
Doença de Parkinson/terapia , Estimulação Transcraniana por Corrente Contínua , Adulto , Discinesias/fisiopatologia , Discinesias/terapia , Humanos , Doença de Parkinson/fisiopatologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Cochrane Database Syst Rev ; 3: CD009645, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996760

RESUMO

BACKGROUND: Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength and cognitive abilities (including spatial neglect) after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve ADL performance, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. OBJECTIVES: To assess the effects of tDCS on ADLs, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 2), MEDLINE (1948 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), AMED (1985 to February 2015), Science Citation Index (1899 to February 2015) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA: This is the update of an existing review. In the previous version of this review we focused on the effects of tDCS on ADLs and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADLs, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS: We included 32 studies involving a total of 748 participants aged above 18 with acute, postacute or chronic ischaemic or haemorrhagic stroke. We also identified 55 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes.We found nine studies with 396 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADLs after stroke. We found evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.24, 95% confidence interval (CI) 0.03 to 0.44; inverse variance method with random-effects model; moderate quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADLs at the end of follow-up, and found improved ADL performance (SMD 0.31, 95% CI 0.01 to 0.62; inverse variance method with random-effects model; moderate quality evidence). However, the results did not persist in a sensitivity analysis including only trials of good methodological quality.One of our secondary outcome measures was upper extremity function: 12 trials with a total of 431 participants measured upper extremity function at the end of the intervention period, revealing no evidence of an effect in favour of tDCS (SMD 0.01, 95% CI -0.48 to 0.50 for studies presenting absolute values (low quality evidence) and SMD 0.32, 95% CI -0.51 to 1.15 (low quality evidence) for studies presenting change values; inverse variance method with random-effects model). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified four studies with a total of 187 participants (absolute values) that showed no evidence of an effect (SMD 0.01, 95% CI -0.48 to 0.50; inverse variance method with random-effects model; low quality evidence). Ten studies with 313 participants reported outcome data for muscle strength at the end of the intervention period, but in the corresponding meta-analysis there was no evidence of an effect. Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect.In six of 23 studies (26%), dropouts, adverse events or deaths that occurred during the intervention period were reported, and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.01, 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model; low quality evidence; analysis based only on studies that reported either on dropouts, or on adverse events, or on both). However, this effect may be underestimated due to reporting bias. AUTHORS' CONCLUSIONS: At the moment, evidence of very low to moderate quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance after stroke. However, there are many ongoing randomised trials that could change the quality of evidence in the future. Future studies should particularly engage those who may benefit most from tDCS after stroke and in the effects of tDCS on upper and lower limb function, muscle strength and cognitive abilities (including spatial neglect). Dropouts and adverse events should be routinely monitored and presented as secondary outcomes. They should also address methodological issues by adhering to the Consolidated Standards of Reporting Trials (CONSORT) statement.


Assuntos
Atividades Cotidianas , Terapia por Estimulação Elétrica/métodos , Reabilitação do Acidente Vascular Cerebral , Adulto , Humanos , Atividade Motora/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica
20.
Cochrane Database Syst Rev ; (5): CD009760, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25929694

RESUMO

BACKGROUND: Stroke is one of the leading causes of disability worldwide and aphasia among survivors is common. Current speech and language therapy (SLT) strategies have only limited effectiveness in improving aphasia. A possible adjunct to SLT for improving SLT outcomes might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve aphasia. OBJECTIVES: To assess the effects of tDCS for improving aphasia in people who have had a stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (November 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, November 2014), MEDLINE (1948 to November 2014), EMBASE (1980 to November 2014), CINAHL (1982 to November 2014), AMED (1985 to November 2014), Science Citation Index (1899 to November 2014) and seven additional databases. We also searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA: We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we only analysed the first period as a parallel group design) comparing tDCS versus control in adults with aphasia due to stroke. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias, and extracted data. If necessary, we contacted study authors for additional information. We collected information on dropouts and adverse events from the trials. MAIN RESULTS: We included 12 trials involving 136 participants for qualitative assessment. None of the included studies used any formal outcome measure for our primary outcome measure of functional communication - that is, measuring aphasia in a real-life communicative setting. We did a meta-analysis of six trials with 66 participants of correct picture naming as our secondary outcome measure, which demonstrated that tDCS may not enhance SLT outcomes (standardised mean difference (SMD) 0.37, 95% CI -0.18 to 0.92; P = 0.19; I² = 0%; inverse variance method with random-effects model; with a higher SMD reflecting benefit from tDCS). We found no studies examining the effect of tDCS on cognition in stroke patients with aphasia. We did not find reported adverse events and the proportion of dropouts was comparable between groups. AUTHORS' CONCLUSIONS: Currently there is no evidence of the effectiveness of tDCS (anodal tDCS, cathodal tDCS and bihemispheric tDCS) versus control (sham tDCS) for improving functional communication, language impairment and cognition in people with aphasia after stroke. Further RCTs are needed in this area to determine the effectiveness of this intervention. Authors of future research should adhere to the CONSORT Statement.


Assuntos
Afasia/terapia , Acidente Vascular Cerebral/complicações , Estimulação Transcraniana por Corrente Contínua , Adulto , Afasia/etiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA