Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 81(1): 330, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097839

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex syndrome with poorly understood mechanisms driving its early progression (GOLD stages 1-2). Elucidating the genetic factors that influence early-stage COPD, particularly those related to airway inflammation and remodeling, is crucial. This study analyzed lung tissue sequencing data from patients with early-stage COPD (GSE47460) and smoke-exposed mice. We employed Weighted Gene Co-Expression Network Analysis (WGCNA) and machine learning to identify potentially pathogenic genes. Further analyses included single-cell sequencing from both mice and COPD patients to pinpoint gene expression in specific cell types. Cell-cell communication and pseudotemporal analyses were conducted, with findings validated in smoke-exposed mice. Additionally, Mendelian randomization (MR) was used to confirm the association between candidate genes and lung function/COPD. Finally, functional validation was performed in vitro using cell cultures. Machine learning analysis of 30 differentially expressed genes identified 8 key genes, with CLEC5A emerging as a potential pathogenic factor in early-stage COPD. Bioinformatics analyses suggested a role for CLEC5A in macrophage-mediated inflammation during COPD. Two-sample Mendelian randomization linked CLEC5A single nucleotide polymorphisms (SNPs) with Forced Expiratory Volume in One Second (FEV1), FEV1/Forced Vital Capacity (FVC) and early/later on COPD. In vitro, the knockdown of CLEC5A led to a reduction in inflammatory markers within macrophages. Our study identifies CLEC5A as a critical gene in early-stage COPD, contributing to its pathogenesis through pro-inflammatory mechanisms. This discovery offers valuable insights for developing early diagnosis and treatment strategies for COPD and highlights CLEC5A as a promising target for further investigation.


Assuntos
Progressão da Doença , Inflamação , Lectinas Tipo C , Macrófagos , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica , Receptores de Superfície Celular , Animais , Humanos , Masculino , Camundongos , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Aprendizado de Máquina , Macrófagos/metabolismo , Macrófagos/patologia , Análise da Randomização Mendeliana , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
2.
J Med Virol ; 96(3): e29544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511577

RESUMO

The impact of SARS-CoV-2 infection shortly after vaccination on vaccine-induced immunity is unknown, which is also one of the concerns for some vaccinees during the pandemic. Here, based on a cohort of individuals who encountered BA.5 infection within 8 days after receiving the fourth dose of a bivalent mRNA vaccine, preceded by three doses of inactivated vaccines, we show that booster mRNA vaccination provided 48% protection efficacy against symptomatic infections. At Day 7 postvaccination, the level of neutralizing antibodies (Nabs) against WT and BA.5 strains in the uninfected group trended higher than those in the symptomatic infection group. Moreover, there were greater variations in Nabs levels and a significant decrease in virus-specific CD4+ T cell response observed in the symptomatic infection group. However, symptomatic BA.5 infection significantly increased Nab levels against XBB.1.9.1 and BA.5 (symptomatic > asymptomatic > uninfected group) at Day 10 and resulted in a more gradual decrease in Nabs against BA.5 compared to the uninfected group at Day 90. Our data suggest that BA.5 infection might hinder the early generation of Nabs and the recall of the CD4+ T cell response but strengthens the Nab and virus-specific T cell response in the later phase. Our data confirmed that infection can enhance host immunity regardless of the short interval between vaccination and infection and alleviate concerns about infections shortly after vaccination, which provides valuable guidance for developing future vaccine administration strategies.


Assuntos
Anticorpos Neutralizantes , Vacinação , Humanos , Imunização Secundária , RNA Mensageiro/genética , Vacinas Combinadas , Anticorpos Antivirais
3.
J Agric Food Chem ; 72(17): 9669-9679, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632108

RESUMO

Soil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.


Assuntos
Compostos Alílicos , Doenças das Plantas , Espécies Reativas de Oxigênio , Sulfetos , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Sulfetos/farmacologia , Sulfetos/metabolismo , Sulfetos/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Alho/química , Alho/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
4.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811527

RESUMO

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Assuntos
Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19 , Células T de Memória , Reinfecção , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Masculino , Feminino , Reinfecção/imunologia , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Adulto , Anticorpos Antivirais/imunologia , Células T de Memória/imunologia , Idoso , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica
5.
Front Immunol ; 14: 1334597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264657

RESUMO

Introduction: Memory T (Tm) cells are a subpopulation of immune cells with great heterogeneity. Part of this diversity came from T cells that were primed with different viruses. Understanding the differences among different viral-specific Tms will help develop new therapeutic strategies for viral infections. Methods: In this study, we compared the transcriptome of Tm cells that primed with CMV, EBV and SARS-CoV-2 with single-cell sequencing and studied the similarities and differences in terms of subpopulation composition, activation, metabolism and transcriptional regulation. Results: We found that CMV is marked by plentiful cytotoxic Temra cells, while EBV is more abundant in functional Tem cells. More importantly, we found that CD28 and CTLA4 can be used as continuous indicators to interrogate the antiviral ability of T cells. Furthermore, we proposed that REL is a main regulatory factor for CMV-specific T cells producing cytokines and plays an antiviral role. Discussion: Our data gives deep insight into molecular characteristics of Tm subsets from different viral infection, which is important to understand T cell immunization. Furthermore, our results provide basic background knowledges for T cell based vaccine development in future.


Assuntos
Infecções por Citomegalovirus , Viroses , Humanos , Diferenciação Celular , Células T de Memória , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA